iy

S
EKTH®

% VETENSKAP §Z§
29 OCH KONST 2%
o il
AN

Causes and Mitigations of
Unreproducible Builds in Java

Aman Sharma, Benoit Baudry, Martin Monperrus

https://arxiv.org/abs/2504.21679
https://arxiv.org/abs/2504.21679

s

BTy,

(5 Who am I?

%%Xé?"

Indian Institute of Technology Roorkee, India
« Received Bachelor of Technology in 2021
- Was a part of Information Management Group

KTH Royal Institute of Technology, Sweden

- Joined as a Research Engineer in 2021

- Worked on Sorald, Collector-Sahab SBOM.exe, and other projects in the
research group

- Switched to a PhD student in February 2023 :f%&égf:;;‘;j’ég
- Funded by CHAINS to work on Software Supply Chain Security e iats

- Supervised by Martin Monperrus and Benoit Baudry

06-05-2025 Aman Sharma | amansha@kth.se

s

gge — g&

{! What is Reproducible Builds?

S%\é?"

Build Reproducibility is a property of a software build process where the output artifact is
bit-by-bit identical when built again, given a fixed version of source code and_build
dependencies, regardless of the environment [1].

Source +
Depemdencies

'
Output 1 .a “ Output 2

Io(entmal))

[1] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the Integrity of Software Supply Chains. IEEE
Software 39, 2 (March 2022), 62-70. https://doi.org/10.1109/MS.2021.3073045

06-05-2025 Aman Sharma | amansha@kth.se

@ How to check for reproducible builds?

Build twice and
compare

Rebuild
/ artifacts (1)

Are they identical?

De(ae.no(encies \
Rel:uila(/

artifacts (2)

Source code +

Done by rebuilder/verifier

[2] G. Benedetti et al.,, ‘An Empirical Study on Reproducible
Packaging in Open-Source Ecosystems’, 57th International
Conference on Software Engineering, 2025.

Build and compare
with package registry

Done by olevelo(oer

Package . Re_{:e_rey\ce

Registry artifacts

Are tl«ey identical?

Source code + Rebuild /
= artifacts

Depeno(encie&

Done by rebuilder/verifier

[3] J. Malka, S. Zacchiroli, and T. Zimmermann, ‘Does Functional
Package Management Enable Reproducible Builds at Scale? Yes’,
in 22nd International Conference on Mining Software
Repositories, Ottawa

06-05-2025 Aman Sharma | amansha@kth.se

ks

BB,

{5, Related Work: build twice and compare

[4] G. Benedetti et al., "An Empirical Study on Reproducible Packaging in Open-Source Ecosystems’,
presented at the Proceedings of the 47th International Conference on Software Engineering, 2025.

Summary: Checking if builds are reproducible for RubyGems, PyPI, Maven.

[5] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, ‘Automated localization for unreproducible builds’, in
Proceedings of the 40th International Conference on Software Engineering, 2018

Summary: Localizing files that differ in two subsequent builds for Debian packages.

[6] O. S. Navarro Leija et al., ‘Reproducible Containers’, in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and Operating
Systems, 2020

Summary: Wrapper around the build process for debian packages.

a

Ty,

”TH% Related Work: build and compare with package registry

[7] J. Malka, S. Zacchiroli, and T. Zimmermann, ‘Does Functional Package Management Enable
Reproducible Builds at Scale? Yes’, in 22nd International Conference on Mining Software
Repositories, 2025.

Summary . .

We like this approach more
[8] R. Baje o fix,
auess @S it Maximizes environment i
Summary . Debian
packages differences!

[9] V. Andersson, Geth Rebuild : |Verifiable Buildg for Go Ethereum. 2024
Summary: Rebuilds ethereum client that enables connection to the main ethereum network.

06-05-2025 Aman Sharma | amansha@kth.se

We always prefer

"Reproducible Builds” over
other terms.

s

gég " Q&

{52} Why is it important?

s

1. Ensuring Integrity: Reproducible builds ensure that the executable corresponds to the
source code (assuming source code can be audited) and hence is not tampered with. [11]

2. Faster builds: Dependent packages do not need to be rebuilt and dependent tasks do not
need to be rerun if a rebuild of a package does not yield different results. [12]

3. Patch updates: Only changes in source code (or dependencies) will lead to differences in
the generated binaries thus reducing storage requirements. [12]

[11] Mike Perry. 2013. Deterministic Builds Part One: Cyberwar and Global Compromise | Tor Project.
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise/
[12] https://reproducible-builds.org/

06-05-2025 Aman Sharma | amansha@kth.se

s

BTy,

{5, Why is it important? XZ Utils backdoor example

B

What?

Malicious code was introduced in the Linux build (tarball) of “xz" that enabled remote SSH
access to the attacker.

How serious?

Extremely. Used in xz compression tool that outputs .tar.xz. But it was detected when new
versions of Linux distros were in development phase.

How can reproducible builds detect such attacks?

Adef “gitl«ub.com/xz\
9"‘\\ /xz.tar.xz h Not

Or?g?nal Source _ 1 |
”= dentica
COO(Q /P /L\OW\Q/QMQV\/ / [13] J. Malka, ‘How NixOS and reproducible
Qéq;/ t builds could have detected the xz backdoor
ole’, Xz.lar.xz for the benefit of all’. Available:

—] https://luj.fr/blog/how-nixos-could-have-dete
06-05-2025 Aman Sharma | amansha@kth.se cted-xz.html

s

“é,? == %a

&) Are build ducibl

wzuey Are builds reproducible yet?

™

Arch Linux is 87.7% reproducible with 1849 bad and 13164 good packages. every 4.1 months from 2017 to 2023. Our findings show that
[core] repository is 95.1% reproducible with 13 bad T 15 e paney bitwise reproducibility in nixpkes is very high and has known
[extra] repository is 87.3% reproducible with 1800 bad and 12392 good package an upward trend, ‘f0m[69% in 2017 to 91% in 2023} The mere
[extra-testing] repository is 92.8% reproducible with 36 bad and 519 good packe ability to rebuild packages (whether bitwise reproducibly or
[core-testing] repository is 100.0% reproducible with 0 bad and 1 good packages.

e i e e

Finding 1: 1,303 out of 3,390 studied versions (38%)
are non-reproducible. With such a large portion of non-
reproducible package versions, developers should not
blindly trust the verifiability of NPM packages. [14]

... but the testing distribution on amdé4 is 96.5% reproducible right now!

rebuilding 7080 releases of 869 projects:

5112 releases are confirmed fully reproducible (100% reproducible artifacts [%4),

1968 releases are only partially reproducible (contain some unreproducible artifacts 1))
on 869 projects, 755 have at least one fully reproducible release, 114 have none

[14] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME)

06-05-2025 Aman Sharma | amansha@kth.se 10

by

B ‘5&9

g, veremsar ﬁ;
&;‘;;;;;;&3 > Build Path
Build Time-Stamp

—>{File Permission -

-»| Filesystem Ordering
-‘ Randomness

hl Package Dependency

Why aren't

Reference to Memory
Address
. .
b u I I d s >i Uninitialized Memory
([J
P C ?
re ro d u I b I e Information
.

Short answer: Timestamps, signature

embedded

User Information

06-05-2025 Aman Sharma | i m

s

BTy,

£ KTH* What is the status of reproducible builds in Java?

Most closely related work:

[16]J. Xiong, Y. Shi, B. Chen, F. R. Cogo, and Z. M. (Jack) Jiang, ‘Towards build verifiability for
Java-based systems’, in Proceedings of the 44th International Conference on Software

Engineering: Software Engineering in Practice, in ICSE-SEIP 22

1) Follows “build twice and compare” 2) Small and close sourced dataset

rebuilding 7080 releases of 869 projects:
5112 releases are confirmed fully reproducible (100% reproducible artifacts [%4),

1968 releases are only partially reproducible (contain some unreproducible artifacts)

on 869 projects, 755 have at least one fully reproducible release, 114 have none

[16] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages', in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME)

06-05-2025 Aman Sharma | amansha@kth.se

ks

Fy,
FXTHE

sssssssss

38 OCH KONST 8¢
Do o8
R o

Reproducible Central

1. Itis a GitHub repository:
https://github.com/jvm-repo-rebuild/re

producible-central/

2. Artifacts like jar, .json, .zip files are
downloaded from Maven Central.

3. Source code is downloaded from
hosting services like GitHub.

4. The source code along with all of its
build requirement is built using a
“buildspec”.

5. Buildspec file is specification that lists
how the build should done

a. Build command
b. Java version
c. Environment variables

6. If corresponding reference and rebuild
artifacts are identical, project is marked
reproducible.

[17] H. Boutemy, jvm-repo-rebuild/reproducible-central. (Oct. 31, 2024).

jvm-repo-rebuild.

06-05-2025

Aman Sharma | amansha@kth.se

*Fr.iV\ria.g{:or‘ge.sPoon:spoon-core:']1.2.0

Maven . +
Central Jave * pom
"Builolspec"’
v
Reference Rebuild
artifocts artifocts
T (86 VG . 28) - | BURA R p L,
spoon.sources.jar
re %@%EQ‘E}CQI?

Are they identical?

https://github.com/jvm-repo-rebuild/reproducible-central/
https://github.com/jvm-repo-rebuild/reproducible-central/

sssssssss

Our first goal

To build a taxonomy of reasons why unreproducible
builds occur in Java and propose a fix for them

06-05-2025 Aman Sharma | amansha@kth.se

We build our dataset on top of Reproducible Central - it is an infrastructure to verify whether
Maven projects are reproducible.

1. Snapshot Reproducible Central on 8th October, 2024 (d280bf1)
a. 706 Maven projects and their buildspec files

2. We apply four filters that resulted in exclusion of projects
a. Projects that require manual intervention (eg. setting precise Java version).

b. Projects that have more artifacts built locally than on package registry (eg. some jars are
are built locally but never released).

c. Projects that do not use Maven as build tool.
d. Projects that mapped artifacts incorrectly (eg. pom file is compared with jar).

3. Finally, we have
a. 7,961 Maven releases of submodules
b. 12,283 unreproducible artifact pairs

https://github.com/jvm-repo-rebuild/reproducible-central/commit/d280bf1555e2ec6f172b678017b7f00370cb7a00

s

R R,

(5% RQ1: Causes of Unreproducibility

s

Reason for Unreproducibility | Root Cause of Unreproducibility | Novelty | Example
Environment - Built-By attribute
Build Manifests Rebuild Process - Build-Jdk attribute
Non-deterministic configuration v Embedded branch names
Java Vendor v Different checksum algorithms
SBOM Custom release configuration v Releasing a subset of artifacts
Non-deterministic information v Timestamp
Filesyshem Environment - Permissions
Custom release configuration v Generated binaries are not included
JDK Version - Ordering of constant pool entries
JVM Bytecode Embedded data v Git branch embedded

Build time generated code

Lambda functions

Versioning Properties

Number of tags embedded in Jar

Timestamps - - Embedded in shell script in Jar files
Table 1: Summary of the taxonomy of unreproducibility causes
06-05-2025 Aman Sharma | amansha@kth.se

ks

BTy,
éif’KTH%%

iy Mitigation Strategies

There are 3 mitigation strategies

1. Fix the build process: repairing the build script used by developer to publish package
a. Pros: anyone can replicate the build with O ad-hoc configuration
b. Cons: sometimes you have to embed non-deterministic information like signatures

2. Fix the rebuild process: repairing the buildspec file
a. Pros: contributes to fixes in the build process
b. Cons: can be hard to adapt for future releases

3. Canonicalization: conversion of output artifacts into a standard representation that is free
of non-deterministic changes
a. Pros: past releases can also be verified, no need to rebuild, “i can't find a jdk 14 nowadays”
b. Cons: careful removal as it may mask meaningful differences

We try to evaluate canonicalization since few work in the literature

[18] J. Dietrich, T. White, B. Hassanshahi, and P. Krishnan, ‘Levels of Binary Equivalence for the Comparison of Binaries from Alternative Builds'

s

BTy,

ézE‘KTH%

sssss

AP

+ Example: Build Manifest

-

-Built-By: root
\jBuiLt—By: aman

)

Mitigation: Fix build
process or canonicalize

-~

-Specification-Title:
-Specification-Version:
-Specification-Vendor:
-Implementation-Title:

-Implementation-Vendor:
some more attribute

Apache Any23

-Implementation-Version:

CSV Utilities
2.7

The Apache Software Foundation

Apache Any23 CSV Utilities
2.7

The Apache Software Foundation

S

~

06-05-2025

Aman Sharma | amansha@kth.se

s

BTy,
%KTH%

f Build Manifest mitigation

or

-Built-By: root -Built-By: root
+Built-By: foo

-Built-By: root Now

Diff between canonicalized artifact)
Identical!

+Built-By: aman

-Built-By: aman -Built-By: aman

Diff between original tBuilt-By: foo

reference and rebuild
artifacts

or

06-05-2025 Aman Sharma | amansha@kth.se

s

BTy,
$KTH%

g Example: Software Bill of Materials

/
= <hash alg=\"SHA3-384\">289f952[TRUNCATED]</hash>
= <hash alg=\"SHA3-256\">32b50a7[TRUNCATED]</hash>
\ <hash alg=\"SHA3-512\">1daf813[TRUNCATED]</hash>

Reason: Azul JDK had backported these hash algorithms.

Mitigation: Fix build process by correcting the Java vendor

06-05-2025 Aman Sharma | amansha@kth.se

s

B,
g % e I3
ey Example: Filesystem
/
--Tw-Tr--r-- 100t unexepack-0.1.1/unexepack.jar
+-rw-rw-r-- aman unexepack-0.1.1/unexepack.jar
_

Mitigation: Set permissions and owner to fixed value (canonicalization)

06-05-2025 Aman Sharma | amansha@kth.se

s

% = 9&5
KTH
% VETENSKAP y eco e
R OCN KONST “o
°S%~xé?°
private static com.google.common.base.Functions$IdentityFunction[] $values(); d;

descriptor: ()[Lcom/google/common/base/Functions$IdentityFunction;
flags: (0x100a) ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETIC
Code:

stack=4, locals=0, args_size=0

0: iconst_1

. anewarray #1 // class com/google/common/base/Functions$IdentityFunction
dup
: iconst_@
. getstatic #2 // Field INSTANCE:Lcom/google/common/base/Functions$IdentityFuncti
: aastore

10: areturn
LineNumberTable:

line 90: @

a cpovirk on Feb 14

© o v s

Mitigation: Hard to find JDK in such
cases. It is better to consider two
implementations equivalent
(canonicalize).

Member = ***

Hi. At this point, we build our releases by running a script on our local machines. (I expect that to change in the future as part
of general security hardening.) Until recently, we even used the default JDK on our machines, which is a version that

occasionally has patches to javac. (Nowadays, our default is to use a standard Debian JDK.)

Our JDK 11 has a patch to omit enclosing-class references—much like |DK-8271717 did for later |DKs but I think perhaps even
more aggressive in omitting the reference for Serializable types (thoughIdon't think that difference is relevant here)?

That should explain the LocalCache difference.
For enums, I suspect that we also had a patch like |DK-8241798.

But in short, we were using a patched javac.

(®)

06-05-2025 Aman Sharma | amansha@kth.se

22

sssssss

Versmnlng Properties

/

-SCM-Git-Branch: master
+SCM-Git-Branch: 338023a

_

/

-git.tags=drill-1.21.0
+git.tags=drill-1.21.0,drill-1.21.1,drill-1.21.2

Mitigation: Remove such attributes (canonicalization).

ks

BTy,
éif’KTH%%

vvvvvvvvv ; Timestamps

-#Wed Apr 20 20:27:41 CEST 2022
+#Fri Oct 18 03:03:44 UTC 2024

they can be embedded in the properties file

generated documentation

shell scripts appendix

executable binaries o

software bill of materials Mitigation: Add

JVM bytecode ‘project.build.outputTimestamp
file metadata property to pom so that plugins can
MANIFEST.MF respect it (fixing build process)

NOTICE

servlets created by Jasper JSP compiler

CoOoo~NoORWN =

—

Takeaway: 6 main reasons of

unreproducibility in Java

sssssssss

Our second goal

Analyze effectiveness of canonicalization in
mitigating unreproducible builds

06-05-2025 Aman Sharma | amansha@kth.se

26

s

“23 = %

%;ZS"EE{? What is this term “canonicalization”?

s

Inspired by canonical URL. To choose the
preferred, representative URL for a web page,
helping search engines understand which
version of a page should be indexed [19].

Also, used in previous work to detect
allowlisted classes at runtime.

In our context, we create a preferred
representation of the artifact which abstracts
away non-deterministic differences.

1. Removing parts of artifacts
2. Setting fixed values

[19] https://support.google.com/webmasters/answer/10347851?hl=en

@3@

* Classnames could
change across different
executions.

* The type references
change.

* The order of method is
not fixed.

public class $Proxyl@ {
+ public class $Proxy7 {
- private static $Proxy10.x;

+ private static $Proxy7.x;
= mE (RS

+ m3 () {}

= m3 ()}

+ ml () {} [201
}

[20] A. Sharma, M. Wittlinger, B. Baudry, and M. Monperrus, 'SBOM.EXE: Countering Dynamic Code Injection based on Software Bill of Materials

in Java’, Jun. 28, 2024, arXiv: arXiv:2407.00246.

06-05-2025 Aman Sharma | amansha@kth.se

https://support.google.com/webmasters/answer/10347851?hl=en

Ak
FKTHY
%:um Kom:g;

Artifact
Canonicalization

[t means that the entire artifact is
transformed by removing

non-deterministic and spurious changes,

especially in metadata.

Eg. ordering of files in archive is made
consistent

Tool used: OSS-Rebuild [21]

https://github.com/google/oss-rebuild

Bytecode
Canonicalization

It is a process of transforming the
bytecode of a program into a
representation that is independent of
specific implementation details inserted
by the compiler.

Eg. implementation of string
concatenation pre and post Java 9

Tool used: jNorm [22]

https://github.com/google/oss-rebuild

s

BTy,
%”KTH%

fxi RQ2: Effectiveness of Artifact Canonicalization

Tool Successful Failed
Canonicalization | Canonicalization

OSS-REBUILD (4ef4c01) 1165 (9.48%) 11118 (90.52%)

CHAINS-REBUILD (6dd67d5) 3036 (24.72%) 9247 (75.28%)

Table 2: Results of OSS-REBUILD and CHAINS-REBUILD on
12,283 artifacts.

OSS-Rebuild: Tool by Google to canonicalize software artifacts.

CHAINS-Rebuild: Fork of OSS-Rebuild with support for canonicalizing build manifests and
embedded versioning properties.

06-05-2025 Aman Sharma | amansha@kth.se

a

Ty,
%KTH%

s RQ2: Effectiveness of Artifact Canonicalization

Tool Successful Failed

00 Canonlcahzatlon Canonlcallzatlon
OSS-R;

CAIN Takeaway 2.5x Increase In
Table : on

w083 Canonicalized artifacts with
ossreout ONNlY @ few Improvements.

CHAINS-Rebulld: Fork ot OSS-Rebuilld with support tor canonicalizing bulld manitests and
embedded versioning properties.

06-05-2025 Aman Sharma | amansha@kth.se

ks

BTy,
éif’KTH%‘x%

=y RQ3: Effectiveness of Bytecode Canonicalization

We select a subset of unreproducible artifacts that have JVM bytecode changes.
This is 898/12,283 artifact pairs.

Successful Failure in Errorin
canonicalization canonicalization canonicalization
267 (29.7%) 478 (53.2%) 153 (17.1%)

Reasons of failure:

Structural Changes limitation (eg. changes in order of methods, fields, etc)
Control flow limitation (eg. ifne and ifeq)

1

2.

3. Embedded data (eg. absolute file paths)

4. Optimization limitation (eg. string concatenation)

s

R R,

i) Example diff for jNorm and oss-rebuild
S
1 8 99: ifne 106 1 -if v != @ goto label;
2 B 182 iconst | 2 SV
3 = 143: goto 107 3 -goto label;
4 = 106: iconst_® 4 -label:
5 - 1@7: ireturn 5 -v = 0;

label:
-return v;

Listing 2: jNorm diff for
control flow differnce.

Listing 1: javap diff for
control flow difference.

06-05-2025 Aman Sharma | amansha@kth.se

32

ats

Ty,
éif’KTH%‘x%

§ i RQ3: Effectiveness of Bytecode Canonicalization

We select a subset of unreproducible artifacts that have JVM bytecode changes.
This is 898/12,283 artifact pairs.

Takeaway: 4 categories of
Improvements for bytecode
e canonicalization.

2. Control Tiow probiems (eg. IThe ana ITeq)
3. Embedded data (eg. absolute file paths)
4. Optimization problem (eg. string concatenation)

s

Fer
ZKTHY
§, v
St
2.
3.
4.

06-05-2025 Aman Sharma | amansha@kth.se

After
canonicalization

10
5
59/0

Future Work
Formalize the notion of acceptable canonicalization; what to remove and what to keep?
Correctness of canonicalization via running tests.
More features for canonicalization in OSS-Rebuild.
Integration of canonicalization into Reproducible Central infrastructure?
result:
Central Reposit i i eor
entral Repository groupld artifactId(s) versions reproducible?
biz.aQute.bnd bnd-maven-plugin 10
ch.galinet reproducible-build-maven-plugin 5
ch.qos.logback logback 59 fd/15 A

S&%&Xfﬁ?ézg
Conclusion
1. A comprehensive taxonomy of unreproducible builds in Java and their

mitigation.

2. Artifact and bytecode canonicalization in conjunction can be used to
mitigate unreproducibility.

Canonicalization for Unreproducible Builds in Java

Aman Sharma Benoit Baudry Martin Monperrus
ge ey % (T al Institute of Technology Université de Montréal KTH Royal Institute of Technology
38 Stockholm, Sweden Montréal, Canada Stockholm, Sweden

ZKTHY

VETENSKAP
28 OCH KONST %

@

ABSTRAC

o of The increasing complexity of software supply chains and the rise
Q%X%D of supply chain attacks have elevated concerns around software
integrity. Users and stakeholders face significant challenges in val-
idating that a given software artifact corresponds to its declared
source. Reproducible Builds address this challenge by ensuring
that independently performed builds from identical source code
produce identical binaries. However, achieving reproducibility at
scale remains difficult, especially in Java, due to a range of non-
deterministic factors and cave in the build process. In this work,
we focus on reproducibility in Java-based software, archetypal of
enterprise applications. We introduce a conceptual framework for
reproducible builds, we analyze a large dataset from Reproducible
Central, and we develop a novel taxonomy of six root causes of un-

I reproducibility. We study actionable mitigations: artifact and byte-
code canonicalization using OSS-ResuiLp and JNorm respectively.
[] Finally, we present CiaINs-REBUILD, a tool that raises reproducibil-

ity success from 9.48% to 26.89% on 12,283 unreproducible artifact

To sum up, our contributions are the first large-scale taxonomy of
build unreproducibility causes in Java, a publicly available dataset
of unreproducible builds, and CraiNs-REBUILD, a canonicalization

Am an S h arMma tool for mitigating unreproducible builds in Java.
KEYWORDS

Reproducible Builds, Software Supply Chain. Canonicalization, Java

1 INTRODUCTION
The growing complexity of software supply chains [9, 54], coupled
with the increasing frequency of supply chain attacks ', raises con-
cerns about software integrity. In such a fragmented ecosystem,
. .. relying solely on assumptions about the identity of the distribu-
Pa pe r. v] is no longer sufficient - what is needed is verifiable evidence
K that the software one installs corresponds exactly to its declared
source. This challenge is especially acute in open source environ-
ments, where binaries are often distributed separately from their
source code [11], making it difficult for users to independently vali-
date what the a result, the focus is shifting toward
techniques that can guarantee that what is built matches what was
intended, regardless of who performs the build
This technique is formally called “Reproducible Build™ [10, 59]:
iilds are considered “reproducible” if and only if the build process
is deterministic, where the same binary can be computed from the
same source code by independent parties [24]. It helps prevent at-
tacks on the build pro where an attacker modifies it to insert
backdoors or malicious code into the software application to be
built [39]. Any backdoor or malicious code would be detected by
the verifier as the built artifact would not match the original artifact.

06-05-2025 Aman Sharma

Uhttps://www.sonatype.com/hubfs/SSCR R_2 - 10-24.pdf

Java by leveragir

amansha@kth.se benoit.baudry@umontreal. monperrus@kth.s

This approach has already seen adoption in security-critical envi-
ronments, such as in certain federal government contracts, where
vendors are required to supply sourc so the agencies can
perform their own builds and verify the integrity of the software “

Despite the promises of Reproducible Builds, ensuring and veri-
fying reproducibility at scale remains technically challenging due
to the multitude of spurious differences in build outputs (e.g.. times-
tamps, file ordering). Those differences make binaries appear dif-
ferent even when built from the same source. with an untampered
build pipeline [17]. Spurious differences hinder reproducibility and
make it difficult to justify the differences between two builds. XZ
Utils is a widely used compression library that is used in alm
all Linux distributions. In it is found that the XZ Utilshasa
backdoor to give remote code execution to the attacker [42]. How-
ever, this backdoor is only observed in the official tarballs on the
registry and do not exist in the git repository. Such supply chains

acks can be prevented if build process is reproducible. In the ¢
of XZ Utils, if the tarball on the package registry does not match
the one built from the source code, then the user can be sure that
the tarball is tampered with [30].

In this work, we contribute to solving the problem of achieving
build reproducibility in the context of enterprise software in Java.
Recall that Java has consistently been one of the top 5 program-
ming languages in the world for the past 5 years ~, underscoring
its widespread use and relevance. Its importance in the context of
finance [34. 54], government services [49], and military applica-
tions * * highlights the need for reproducible builds in Java. We aim
at building the most comprehensive omy of unreproducible
builds in Java, and the corresponding mitigation strategies. Further-
more, we perform a deep study how canonicalization - removal of
non-deterministic differences - is a good solution for mitigating
unreproducibility.

Our approach for analyzing unreproducible builds in Java is
shown in Figure 1. We first propose an original framework for build
reproducibility where we clearly define the roles of the builder and
rebuilder and how both of them contribute to reproducible build
verification. Next, we build a dataset of unreproducible builds in
g Reproducible Central [4], the leading project
for rebuilding and verifying Maven applications. We systematically

the dataset to identify and classify the causes of unrepr

n original taxonomy of unreproducibility. Finally.
we leverage the dataset to evaluate the effectiveness of bytecode
and artifact canonicalization. Bytecode canonicalization focuses on
internal representation of program logic and eliminates compiler
introduced variations. While artifact canonicalization eliminates

mailto:amansha@kth.se
https://arxiv.org/abs/2504.21679
https://arxiv.org/abs/2504.21679

