
Causes and Mitigations of 
Unreproducible Builds in Java

Aman Sharma, Benoit Baudry, Martin Monperrus
1

Canonicalization for 
Unreproducible Builds in Java

https://arxiv.org/abs/2504.21679
https://arxiv.org/abs/2504.21679


Who am I?

Indian Institute of Technology Roorkee, India

• Received Bachelor of Technology in 2021

• Was a part of Information Management Group

KTH Royal Institute of Technology, Sweden

• Joined as a Research Engineer in 2021

• Worked on Sorald, Collector-Sahab SBOM.exe, and other projects in the

research group

• Switched to a PhD student in February 2023

• Funded by CHAINS to work on Software Supply Chain Security

• Supervised by Martin Monperrus and Benoit Baudry

2Aman Sharma | amansha@kth.se06-05-2025



What is Reproducible Builds?

3

Build Reproducibility is a property of a software build process where the output artifact is 
bit-by-bit identical when built again, given a fixed version of source code and build 
dependencies, regardless of the environment [1].

Aman Sharma | amansha@kth.se06-05-2025

[1] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the Integrity of Software Supply Chains. IEEE 
Software 39, 2 (March 2022), 62–70. https://doi.org/10.1109/MS.2021.3073045



Build twice and 
compare

4

Build and compare 
with package registry

How to check for reproducible builds?

[2] G. Benedetti et al., ‘An Empirical Study on Reproducible 
Packaging in Open-Source Ecosystems’, 57th International 
Conference on Software Engineering, 2025.

[3] J. Malka, S. Zacchiroli, and T. Zimmermann, ‘Does Functional 
Package Management Enable Reproducible Builds at Scale? Yes’, 
in 22nd International Conference on Mining Software 
Repositories, Ottawa

Aman Sharma | amansha@kth.se06-05-2025



Related Work: build twice and compare

[4] G. Benedetti et al., ‘An Empirical Study on Reproducible Packaging in Open-Source Ecosystems’, 

presented at the Proceedings of the 47th International Conference on Software Engineering, 2025.

Summary: Checking if builds are reproducible for RubyGems, PyPI, Maven.

[5] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, ‘Automated localization for unreproducible builds’, in 

Proceedings of the 40th International Conference on Software Engineering, 2018

Summary: Localizing files that differ in two subsequent builds for Debian packages.

[6] O. S. Navarro Leija et al., ‘Reproducible Containers’, in Proceedings of the Twenty-Fifth 

International Conference on Architectural Support for Programming Languages and Operating 

Systems, 2020

Summary: Wrapper around the build process for debian packages.

5Aman Sharma | amansha@kth.se06-05-2025



Aman Sharma | amansha@kth.se06-05-2025

Related Work: build and compare with package registry

[7] J. Malka, S. Zacchiroli, and T. Zimmermann, ‘Does Functional Package Management Enable 
Reproducible Builds at Scale? Yes’, in 22nd International Conference on Mining Software 
Repositories, 2025.

Summary: Rebuild and verified 700K nix packages. 91% of them are reproducible. 

[8] R. Bajaj, E. Fernandes, B. Adams, and A. E. Hassan, ‘Unreproducible builds: time to fix, 
causes, and correlation with external ecosystem factors’, Empirical Softw. Engg, 2023.

Summary: Reproducibility and survival analysis of Debian and Arch Linux packages. Debian 
packages takes longer to become reproducible but stay reproducible for longer.

[9] V. Andersson, Geth Rebuild : Verifiable Builds for Go Ethereum. 2024

Summary:  Rebuilds ethereum client that enables connection to the main ethereum network.

6

We like this approach more 
as it maximizes environment 

differences!



Reproducible/Verifiable/Accountable builds

Verifiable Builds: Builds are verifiable if the build process of a software can be fixed to output 
bit-by-bit identical artifacts.

Accountable Builds: Builds are accountable if it can be explained why build process outputs 
unequal artifacts [10].

Basically, both of them are reproducible builds with extra steps hence we choose Reproducible 
Builds in our entire study.

7

[10] T. Pohl, P. Novák, M. Ohm, and M. Meier, ‘SoK: Towards Reproducibility for Software Packages in Scripting Language 
Ecosystems’, Mar. 27, 2025, arXiv: arXiv:2503.21705. doi: 10.48550/arXiv.2503.21705.

Aman Sharma | amansha@kth.se06-05-2025

We always prefer 
“Reproducible Builds” over 

other terms.



Why is it important?

1. Ensuring Integrity: Reproducible builds ensure that the executable corresponds to the 
source code (assuming source code can be audited) and hence is not tampered with. [11]

2. Faster builds: Dependent packages do not need to be rebuilt and dependent tasks do not 
need to be rerun if a rebuild of a package does not yield different results. [12]

3. Patch updates: Only changes in source code (or dependencies) will lead to differences in 
the generated binaries thus reducing storage requirements. [12]

8

[11] Mike Perry. 2013. Deterministic Builds Part One: Cyberwar and Global Compromise | Tor Project. 
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise/
[12] https://reproducible-builds.org/

Aman Sharma | amansha@kth.se06-05-2025



Why is it important? XZ Utils backdoor example

What?

Malicious code was introduced in the Linux build (tarball) of `xz` that enabled remote SSH 
access to the attacker.

How serious?

Extremely. Used in xz compression tool that outputs .tar.xz. But it was detected when new 
versions of Linux distros were in development phase.

How can reproducible builds detect such attacks? 

9

[13] J. Malka, ‘How NixOS and reproducible 
builds could have detected the xz backdoor 
for the benefit of all’. Available: 
https://luj.fr/blog/how-nixos-could-have-dete
cted-xz.htmlAman Sharma | amansha@kth.se06-05-2025



Are builds reproducible yet?

10

[14] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE 
International Conference on Software Maintenance and Evolution (ICSME)

[14]

Aman Sharma | amansha@kth.se06-05-2025



Why aren’t 
builds 
reproducible?
Short answer: Timestamps, signature 
embedded

11

[15] R. Bajaj, E. Fernandes, B. 
Adams, and A. E. Hassan, 
‘Unreproducible builds: time to 
fix, causes, and correlation with 
external ecosystem factors’, 
Empirical Softw. Engg.Aman Sharma | amansha@kth.se06-05-2025



What is the status of reproducible builds in Java?

Most closely related work:

[16]J. Xiong, Y. Shi, B. Chen, F. R. Cogo, and Z. M. (Jack) Jiang, ‘Towards build verifiability for 
Java-based systems’, in Proceedings of the 44th International Conference on Software 
Engineering: Software Engineering in Practice, in ICSE-SEIP ’22

1) Follows “build twice and compare” 2) Small and close sourced dataset

 

12

[16] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE 
International Conference on Software Maintenance and Evolution (ICSME)

Aman Sharma | amansha@kth.se06-05-2025



1. It is a GitHub repository: 
https://github.com/jvm-repo-rebuild/re
producible-central/ 

2. Artifacts like jar, .json, .zip files are 
downloaded from Maven Central.

3. Source code is downloaded from 
hosting services like GitHub.

4. The source code along with all of its 
build requirement is built using a 
“buildspec”.

5. Buildspec file is specification that lists 
how the build should done
a. Build command
b. Java version
c. Environment variables

6. If corresponding reference and rebuild 
artifacts are identical, project is marked 
reproducible.

Reproducible Central

[17] H. Boutemy, jvm-repo-rebuild/reproducible-central. (Oct. 31, 2024). 
jvm-repo-rebuild.

Aman Sharma | amansha@kth.se06-05-2025

https://github.com/jvm-repo-rebuild/reproducible-central/
https://github.com/jvm-repo-rebuild/reproducible-central/


Our first goal
To build a taxonomy of reasons why unreproducible 
builds occur in Java and propose a fix for them

14Aman Sharma | amansha@kth.se06-05-2025



Dataset

We build our dataset on top of Reproducible Central - it is an infrastructure to verify whether 
Maven projects are reproducible.

1. Snapshot Reproducible Central on 8th October, 2024 (d280bf1)
a. 706 Maven projects and their buildspec files

2. We apply four filters that resulted in exclusion of projects
a. Projects that require manual intervention (eg. setting precise Java version).
b. Projects that have more artifacts built locally than on package registry (eg. some jars are 

are built locally but never released).
c. Projects that do not use Maven as build tool.
d. Projects that mapped artifacts incorrectly (eg. pom file is compared with jar).

3. Finally, we have
a. 7,961 Maven releases of submodules
b. 12,283 unreproducible artifact pairs

15Aman Sharma | amansha@kth.se06-05-2025

https://github.com/jvm-repo-rebuild/reproducible-central/commit/d280bf1555e2ec6f172b678017b7f00370cb7a00


RQ1: Causes of Unreproducibility

16Aman Sharma | amansha@kth.se06-05-2025



Mitigation Strategies

There are 3 mitigation strategies

1. Fix the build process: repairing the build script used by developer to publish package
a. Pros: anyone can replicate the build with 0 ad-hoc configuration
b. Cons: sometimes you have to embed non-deterministic information like signatures

2. Fix the rebuild process: repairing the buildspec file
a. Pros: contributes to fixes in the build process
b. Cons: can be hard to adapt for future releases

3. Canonicalization: conversion of output artifacts into a standard representation that is free 
of non-deterministic changes
a. Pros: past releases can also be verified, no need to rebuild, “i can’t find a jdk 14 nowadays”
b. Cons: careful removal as it may mask meaningful differences

We try to evaluate canonicalization since few work in the literature

17

[18] J. Dietrich, T. White, B. Hassanshahi, and P. Krishnan, ‘Levels of Binary Equivalence for the Comparison of Binaries from Alternative Builds’

Aman Sharma | amansha@kth.se06-05-2025



Example: Build Manifest

18

// rg.apache.camel:came-ahc-ws:3.13.0
// Built-By: name of user that built the 
artifact
-Built-By: root
+Built-By: aman

// org.apache.any23:apache-any23-csvutils:
2.7
-Specification-Title: Apache Any23 :: CSV Utilities
-Specification-Version: 2.7
-Specification-Vendor: The Apache Software Foundation
-Implementation-Title: Apache Any23 :: CSV Utilities
-Implementation-Version: 2.7
-Implementation-Vendor: The Apache Software Foundation
... some more attributes

Mitigation: Fix build 
process or canonicalize

Aman Sharma | amansha@kth.se06-05-2025



Build Manifest mitigation

19Aman Sharma | amansha@kth.se06-05-2025

// reference
-Built-By: root
// rebuild
+Built-By: aman

-Built-By: root
+Built-By: foo

-Built-By: aman
+Built-By: foo

-Built-By: root

-Built-By: aman

Diff between original
reference and rebuild

artifacts

Diff between canonicalized artifact Now 
Identical!

or

or



Example: Software Bill of Materials

20

// org.apache.commons:commons-parent:61

-          <hash alg=\"SHA3-384\">289f952[TRUNCATED]</hash>
-          <hash alg=\"SHA3-256\">32b50a7[TRUNCATED]</hash>
-          <hash alg=\"SHA3-512\">1daf813[TRUNCATED]</hash>

Reason: Azul JDK had backported these hash algorithms.

Mitigation: Fix build process by correcting the Java vendor

Aman Sharma | amansha@kth.se06-05-2025



Example: Filesystem

21

// io.github.albertus82:unexepack:0.2.1
// change in file permissions and owner
--rw-r--r--  root unexepack-0.1.1/unexepack.jar
+-rw-rw-r--  aman unexepack-0.1.1/unexepack.jar

Mitigation: Set permissions and owner to fixed value (canonicalization)

Aman Sharma | amansha@kth.se06-05-2025



JVM bytecode

22

Mitigation: Hard to find JDK in such 
cases. It is better to consider two 
implementations equivalent 
(canonicalize).

Aman Sharma | amansha@kth.se06-05-2025



Versioning Properties

23

// com.github.ldapchai:ldapchai:0.8.6
// Embedded in MANIFEST.MF
-SCM-Git-Branch: master
+SCM-Git-Branch: 338023a

// org.apache.drill:drill-opentsdb-storage:1.21.0
// Embedded in git.properties
-git.tags=drill-1.21.0
+git.tags=drill-1.21.0,drill-1.21.1,drill-1.21.2

Mitigation: Remove such attributes (canonicalization).

Aman Sharma | amansha@kth.se06-05-2025



Timestamps

1. they can be embedded in the properties file
2. generated documentation
3. shell scripts appendix
4. executable binaries
5. software bill of materials
6. JVM bytecode
7. file metadata
8. MANIFEST.MF
9. NOTICE 

10. servlets created by Jasper JSP compiler

24

-#Wed Apr 20 20:27:41 CEST 2022
+#Fri Oct 18 03:03:44 UTC 2024

Mitigation: Add 
`project.build.outputTimestamp` 
property to pom so that plugins can 
respect it (fixing build process)

Aman Sharma | amansha@kth.se06-05-2025



Aman Sharma | amansha@kth.se06-05-2025

RQ1: Causes of Unreproducibility

25

Takeaway: 6 main reasons of 
unreproducibility in Java



Our second goal
Analyze effectiveness of canonicalization in 
mitigating unreproducible builds

26Aman Sharma | amansha@kth.se06-05-2025



What is this term “canonicalization”? 

Inspired by canonical URL. To choose the 
preferred, representative URL for a web page, 
helping search engines understand which 
version of a page should be indexed [19].

Also, used in previous work to detect 
allowlisted classes at runtime.

In our context, we create a preferred 
representation of the artifact which abstracts 
away non-deterministic differences.

1. Removing parts of artifacts
2. Setting fixed values

27

[19] https://support.google.com/webmasters/answer/10347851?hl=en
[20] A. Sharma, M. Wittlinger, B. Baudry, and M. Monperrus, ‘SBOM.EXE: Countering Dynamic Code Injection based on Software Bill of Materials 
in Java’, Jun. 28, 2024, arXiv: arXiv:2407.00246.

[20]

Aman Sharma | amansha@kth.se06-05-2025

https://support.google.com/webmasters/answer/10347851?hl=en


Artifact 
Canonicalization
It means that the entire artifact is 
transformed by removing 
non-deterministic and spurious changes, 
especially in metadata.

Eg. ordering of files in archive is made 
consistent

Tool used: OSS-Rebuild [21]

28

Bytecode 
Canonicalization
It is a process of transforming the 
bytecode of a program into a 
representation that is independent of 
specific implementation details inserted 
by the compiler.

Eg. implementation of string 
concatenation pre and post Java 9

Tool used: jNorm [22]

[21] https://github.com/google/oss-rebuild
[22] S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden, ‘Java Bytecode Normalization for Code Similarity Analysis’

Aman Sharma | amansha@kth.se06-05-2025

https://github.com/google/oss-rebuild


RQ2: Effectiveness of Artifact Canonicalization

OSS-Rebuild: Tool by Google to canonicalize software artifacts.

CHAINS-Rebuild: Fork of OSS-Rebuild with support for canonicalizing build manifests and 
embedded versioning properties.

29Aman Sharma | amansha@kth.se06-05-2025



Aman Sharma | amansha@kth.se06-05-2025

RQ2: Effectiveness of Artifact Canonicalization

OSS-Rebuild: Tool by Google to canonicalize software artifacts.

CHAINS-Rebuild: Fork of OSS-Rebuild with support for canonicalizing build manifests and 
embedded versioning properties.

30

Takeaway: 2.5x increase in 
canonicalized artifacts with 
only a few improvements.



RQ3: Effectiveness of Bytecode Canonicalization 

We select a subset of unreproducible artifacts that have JVM bytecode changes.

This is 898/12,283 artifact pairs.

Reasons of failure:

1. Structural Changes limitation (eg. changes in order of methods, fields, etc)
2. Control flow limitation (eg. ifne and ifeq)
3. Embedded data (eg. absolute file paths)
4. Optimization limitation (eg. string concatenation)

31

Successful 
canonicalization

Failure in 
canonicalization

Error in 
canonicalization

# 267 (29.7%) 478 (53.2%) 153 (17.1%)

Aman Sharma | amansha@kth.se06-05-2025



Example diff for jNorm and oss-rebuild

32Aman Sharma | amansha@kth.se06-05-2025



Aman Sharma | amansha@kth.se06-05-2025

RQ3: Effectiveness of Bytecode Canonicalization 

We select a subset of unreproducible artifacts that have JVM bytecode changes.

This is 898/12,283 artifact pairs.

Reasons of failure:

1. Structural Changes problems (eg. changes in order of methods, fields, etc)
2. Control flow problems (eg. ifne and ifeq)
3. Embedded data (eg. absolute file paths)
4. Optimization problem (eg. string concatenation)

33

Successful canonicalization Failure in canonicalization

# 267 (29.7%) 487 (53.2%)
Takeaway: 4 categories of 

improvements for bytecode 
canonicalization.



Future Work

1. Formalize the notion of acceptable canonicalization; what to remove and what to keep?

2. Correctness of canonicalization via running tests.

3. More features for canonicalization in OSS-Rebuild.

4. Integration of canonicalization into Reproducible Central infrastructure?

34Aman Sharma | amansha@kth.se06-05-2025

After 
canonicalization

10
5
59/0



Conclusion
1. A comprehensive taxonomy of unreproducible builds in Java and their 

mitigation.

2. Artifact and bytecode canonicalization in conjunction can be used to 
mitigate unreproducibility.

35Aman Sharma | amansha@kth.se06-05-2025



36

Thank you!
Aman Sharma

amansha@kth.se

Paper: 

Canonicalization for Unreproducible Builds in 
Java

Aman Sharma | amansha@kth.se06-05-2025

mailto:amansha@kth.se
https://arxiv.org/abs/2504.21679
https://arxiv.org/abs/2504.21679

