
Unreproducible Builds in Java:
Causes and Mitigations

Aman Sharma, Benoit Baudry, Martin Monperrus

1

What is Reproducible Builds? Why is it important?

2

Build Reproducibility is a property of a software build process where the output artifact is
bit-by-bit identical when built again, given a fixed version of source code and build
dependencies, regardless of the environment [1].

1. Ensuring Integrity: Reproducible builds ensure that the executable corresponds to the
source code (assuming source code can be audited) and hence is not tampered with. [2]

2. Faster builds: Dependent packages do not need to be rebuilt and dependent tasks do not
need to be rerun if a rebuild of a package does not yield different results. [3]

3. Patch updates: Only changes in source code (or dependencies) will lead to differences in
the generated binaries thus reducing storage requirements. [3]

Aman Sharma | amansha@kth.se25-04-2025

[1] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the Integrity of Software Supply Chains. IEEE
Software 39, 2 (March 2022), 62–70. https://doi.org/10.1109/MS.2021.3073045
[2] Mike Perry. 2013. Deterministic Builds Part One: Cyberwar and Global Compromise | Tor Project.
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise/
[3] https://reproducible-builds.org/

Build twice and
compare

3

Build and compare
with package registry

How to check for reproducible builds?

We like this
approach more as

it maximizes
environment
differences!

[4] G. Benedetti et al., ‘An Empirical Study on Reproducible
Packaging in Open-Source Ecosystems’, 57th International
Conference on Software Engineering, 2025.

[5] J. Malka, S. Zacchiroli, and T.
Zimmermann, ‘Does Functional
Package Management Enable
Reproducible Builds at Scale? Yes’,
in 22nd International Conference
on Mining Software Repositories,
Ottawa

Aman Sharma | amansha@kth.se25-04-2025

Are builds reproducible yet?

4

[6] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME)

[6]

Aman Sharma | amansha@kth.se25-04-2025

Why aren’t
builds
reproducible?
Short answer: Timestamps, signature
embedded

5

[7] R. Bajaj, E. Fernandes, B.
Adams, and A. E. Hassan,
‘Unreproducible builds: time to
fix, causes, and correlation with
external ecosystem factors’,
Empirical Softw. Engg.Aman Sharma | amansha@kth.se25-04-2025

What is the status of reproducible builds in Java?

Most closely related work:

[8]J. Xiong, Y. Shi, B. Chen, F. R. Cogo, and Z. M. (Jack) Jiang, ‘Towards build verifiability for
Java-based systems’, in Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, in ICSE-SEIP ’22

Small and close sourced dataset

6

[8] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME)

Aman Sharma | amansha@kth.se25-04-2025

Our first goal
To build a taxonomy of reasons why unreproducible
builds occur in Java and propose a fix for them

7Aman Sharma | amansha@kth.se25-04-2025

1. Artifacts like jar, .json, .zip files are
pulled from Maven Central.

2. Source code is downloaded from
hosting services like GitHub.

3. The source code along with all of its
build requirement is built using a
“buildspec”.

4. Buildspec file is specification that
lists how the build should done
a. Build command
b. Java version
c. Environment variables

5. If corresponding reference and
rebuild artifacts are identical,
project is marked reproducible.

Reproducible Central

[9] H. Boutemy, jvm-repo-rebuild/reproducible-central. (Oct. 31, 2024).
jvm-repo-rebuild.

Aman Sharma | amansha@kth.se25-04-2025

Dataset

We build our dataset on top of Reproducible Central - it is an infrastructure to verify whether
Maven projects are reproducible.

1. Snapshot Reproducible Central on 8th October, 2024 (d280bf1)
a. 706 Maven projects and their buildspec files

2. We apply four filters that resulted in exclusion of projects
a. Projects that require manual intervention (eg. setting precise Java version).
b. Projects that have more artifacts built locally than on package registry (eg. some jars are

are built locally but never releases).
c. Projects that do not use Maven as build tool.
d. Projects that mapped artifacts incorrectly (eg. pom file is compared with jar).

3. Finally, we have
a. 7,961 Maven releases of submodules
b. 12,283 artifact pairs

9Aman Sharma | amansha@kth.se25-04-2025

https://github.com/jvm-repo-rebuild/reproducible-central/commit/d280bf1555e2ec6f172b678017b7f00370cb7a00

RQ1: Causes of Unreproducibility

10Aman Sharma | amansha@kth.se25-04-2025

RQ1: Causes of Unreproducibility

11

Takeaway: 6 main reasons of
unreproducibility in Java

Aman Sharma | amansha@kth.se25-04-2025

Mitigation Strategies

There are 3 mitigation strategies

1. Fix the build process: repairing the build script used by developer to publish package
a. Pros: anyone can replicate the build with 0 ad-hoc configuration
b. Cons: sometimes you have to embed non-deterministic information like signatures

2. Fix the rebuild process: repairing the buildspec file
a. Pros: contributes to fixes in the build process
b. Cons: can be hard to adapt for future releases

3. Canonicalization: conversion of output artifacts into a standard representation that is free
of non-deterministic changes
a. Pros: past releases can also be verified, no need to rebuild, “i can’t find a jdk 14 nowadays”
b. Cons: careful removal as it may mask meaningful differences

We try to evaluate canonicalization since few work in the literature

12

[9] J. Dietrich, T. White, B. Hassanshahi, and P. Krishnan, ‘Levels of Binary Equivalence for the Comparison of Binaries from Alternative Builds’

Aman Sharma | amansha@kth.se25-04-2025

Our second goal
Analyze effectiveness of canonicalization in
mitigating reproducible builds

13Aman Sharma | amansha@kth.se25-04-2025

Artifact
Canonicalization
It means that the entire artifact is
transformed by removing
non-deterministic and spurious changes,
especially in metadata.

Eg. ordering of files in archive is made
consistent

Tool used: OSS-Rebuild [10]

14

Bytecode
Canonicalization
It is a process of transforming the
bytecode of a program into a
representation that is independent of
specific implementation details inserted
by the compiler.

Eg. implementation of string
concatenation pre and post Java 9

Tool used: jNorm [11]

[10] https://github.com/google/oss-rebuild
[11] S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden, ‘Java Bytecode Normalization for Code Similarity Analysis’

Aman Sharma | amansha@kth.se25-04-2025

https://github.com/google/oss-rebuild

RQ2: Effectiveness of Artifact Canonicalization

OSS-Rebuild: Tool by Google to canonicalize software artifacts.

CHAINS-Rebuild: Fork of OSS-Rebuild with support for canonicalizing build manifests and
embedded versioning properties.

15Aman Sharma | amansha@kth.se25-04-2025

RQ2: Effectiveness of Artifact Canonicalization

OSS-Rebuild: Tool by Google to canonicalize software artifacts.

CHAINS-Rebuild: Fork of OSS-Rebuild with support for canonicalizing build manifests and
embedded versioning properties.

16

Takeaway: 2.5x increase in
canonicalized artifacts with
only a few improvements.

Aman Sharma | amansha@kth.se25-04-2025

RQ3: Effectiveness of Bytecode Canonicalization

We select a subset of unreproducible artifacts that have JVM bytecode changes.

This is 898/12,283 artifact pairs.

Reasons of failure:

1. Structural Changes problems (eg. changes in order of methods, fields, etc)
2. Control flow problems (eg. ifne and ifeq)
3. Embedded data (eg. absolute file paths)
4. Optimization problem (eg. string concatenation)

17

Successful canonicalization Failure in canonicalization

267 (29.7%) 487 (53.2%)

Aman Sharma | amansha@kth.se25-04-2025

RQ3: Effectiveness of Bytecode Canonicalization

We select a subset of unreproducible artifacts that have JVM bytecode changes.

This is 898/12,283 artifact pairs.

Reasons of failure:

1. Structural Changes problems (eg. changes in order of methods, fields, etc)
2. Control flow problems (eg. ifne and ifeq)
3. Embedded data (eg. absolute file paths)
4. Optimization problem (eg. string concatenation)

18

Successful canonicalization Failure in canonicalization

267 (29.7%) 487 (53.2%)
Takeaway: 4 categories of

improvements for bytecode
canonicalization.

Aman Sharma | amansha@kth.se25-04-2025

Future Work

1. Formalize the notion of acceptable canonicalization; what to remove and what to keep?

2. More features for canonicalization in OSS-Rebuild.

3. Integration of canonicalization into Reproducible Central infrastructure?

19Aman Sharma | amansha@kth.se25-04-2025

Conclusion
1. A comprehensive taxonomy of unreproducible builds in Java and their

mitigation.

2. Artifact and bytecode canonicalization in conjunction can be used to
mitigate unreproducibility.

20

21

Thank you!

Aman Sharma

amansha@kth.se

Paper Draft:
https://algomaster99.github.io/publications/

by-the-pool/paper.pdf

Aman Sharma | amansha@kth.se25-04-2025

mailto:amansha@kth.se
https://algomaster99.github.io/publications/by-the-pool/paper.pdf
https://algomaster99.github.io/publications/by-the-pool/paper.pdf

