iy

S
EKTH®

% VETENSKAP §Z§
29 OCH KONST 2%
o il
AN

Unreproducible Builds in Java:
Causes and Mitigations

Aman Sharma, Benoit Baudry, Martin Monperrus

s

gé? = g&

{X} What is Reproducible Builds? Why is it important?

%%’

Build Reproducibility is a property of a software build process where the output artifact is
bit-by-bit identical when built again, given a fixed version of source code and_build
dependencies, regardless of the environment [1].

1. Ensuring Integrity: Reproducible builds ensure that the executable corresponds to the
source code (assuming source code can be audited) and hence is not tampered with. [2]

2. Faster builds: Dependent packages do not need to be rebuilt and dependent tasks do not
need to be rerun if a rebuild of a package does not yield different results. [3]

3. Patch updates: Only changes in source code (or dependencies) will lead to differences in
the generated binaries thus reducing storage requirements. [3]

[1] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the Integrity of Software Supply Chains. IEEE
Software 39, 2 (March 2022), 62-70. https://doi.org/10.1109/MS.2021.3073045

[2] Mike Perry. 2013. Deterministic Builds Part One: Cyberwar and Global Compromise | Tor Project.
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise/

[3] https://reproducible-builds.org/

25-04-2025 Aman Sharma | amansha@kth.se

¥ How to check for reproducible builds?

Build twice and
compare

Rebuild
/ artifacts (1)

Are they identical?

De(ae.no(encies \
Rel:uila(/

artifacts (2)

Source code +

Done by rebuilder/verifier

[4] G. Benedetti et al., ’An Empirical Study on Reproducible
Packaging in Open-Source Ecosystems’, 57th International
Conference on Software Engineering, 2025.

25-04-2025 Aman Sharma | amanSha@g@wE@mng Software RepOS|tor|es,

Build and compare
with package registry

Done by olevelo(oer

Package . Re_{:erey\ce

Registry artifacts

Are tl«ey identical?

Source code + Rebuild /
= artifacts

Depeno(encie&

Done by rebuilder/verifier

We like this
[5] J. Malka, S. Zacchiroli, and T.
Zimmermann, ‘Does Functional approaCh more as
Package Management Enable it maximizes

Reproducible Builds at Scale? Yes’,

in 22nd International Conference environment

differences!

Ottawa

s

“é,? == %a

&) Are build ducibl

wzuey Are builds reproducible yet?

™

Arch Linux is 87.7% reproducible with 1849 bad and 13164 good packages. every 4.1 months from 2017 to 2023. Our findings show that
[core] repository is 95.1% reproducible with 13 bad T 15 e paney bitwise reproducibility in nixpkes is very high and has known
[extra] repository is 87.3% reproducible with 1800 bad and 12392 good package an upward trend, ‘f0m[69% in 2017 to 91% in 2023} The mere
[extra-testing] repository is 92.8% reproducible with 36 bad and 519 good packe ability to rebuild packages (whether bitwise reproducibly or
[core-testing] repository is 100.0% reproducible with 0 bad and 1 good packages.

e i e e

Finding 1: 1,303 out of 3,390 studied versions (38%)
are non-reproducible. With such a large portion of non-
reproducible package versions, developers should not
blindly trust the verifiability of NPM packages. [6]

... but the testing distribution on amdé4 is 96.5% reproducible right now!

rebuilding 7080 releases of 869 projects:

5112 releases are confirmed fully reproducible (100% reproducible artifacts [%4),

1968 releases are only partially reproducible (contain some unreproducible artifacts 1))
on 869 projects, 755 have at least one fully reproducible release, 114 have none

[6] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME)

25-04-2025 Aman Sharma | amansha@kth.se 4

by

B ‘5&9

g, veremsar ﬁ;
&;‘;;;;;;&3 > Build Path
Build Time-Stamp

—>{File Permission -

-»| Filesystem Ordering
-‘ Randomness

hl Package Dependency

Why aren't

Reference to Memory
Address
. .
b u I I d s >i Uninitialized Memory
([J
P C ?
re ro d u I b I e Information
.

Short answer: Timestamps, signature

embedded

User Information

25-04-2025 Aman Sharma | i m

s

S,
§Z?‘KTH%

== What is the status of reproducible builds in Java?

rebuilding 7080 releases of 869 projects:
5112 releases are confirmed fully reproducible (100% reproducible artifacts [%4),

1968 releases are only partially reproducible (contain some unreproducible artifacts I\)

on 869 projects, 755 have at least one fully reproducible release, 114 have none

Most closely related work:

[8]J. Xiong, Y. Shi, B. Chen, F. R. Cogo, and Z. M. (Jack) Jiang, ‘Towards build verifiability for
Java-based systems’, in Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, in ICSE-SEIP 22

Small and close sourced dataset

[8] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, ‘Investigating The Reproducibility of NPM Packages’, in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME)

25-04-2025 Aman Sharma | amansha@kth.se

sssssssss

Our first goal

To build a taxonomy of reasons why unreproducible
builds occur in Java and propose a fix for them

‘%ﬁ ReprOdUCible Central frinria.gforge.spoonispoon-core:11.2.0

1. Artifacts like jar, .json, .zip files are Maven . +
pulled from Maven Central. Java * .powm

2. Source code is downloaded from Cev\tral
hosting services like GitHub.

3. The source code along with all of its

build requirement is built using a "Builolspec"'
“buildspec”. v
4. Buildspec file is specification that
"Z_ts hg:ﬁ;tim:fnghou'd done Reference Rebuild
b. Java version artifacts artifocts
c. Environment variables
5. If corresponding reference and jmp.&‘\@@@p.g@.}twﬁ@j«r

rebuild artifacts are identical,

project is marked reproducible. Spoon.sources.ar

re tHREPIUBRtcal?

[9] H. Boutemy, jvm-repo-rebuild/reproducible-central. (Oct. 31, 2024).
jvm-repo-rebuild.

25-04-2025 Aman Sharma | amansha@kth.se Are t L‘ev ;dey\t;cal?

We build our dataset on top of Reproducible Central - it is an infrastructure to verify whether
Maven projects are reproducible.

1. Snapshot Reproducible Central on 8th October, 2024 (d280bf1)
a. 706 Maven projects and their buildspec files

2. We apply four filters that resulted in exclusion of projects
a. Projects that require manual intervention (eg. setting precise Java version).

b. Projects that have more artifacts built locally than on package registry (eg. some jars are
are built locally but never releases).

c. Projects that do not use Maven as build tool.
d. Projects that mapped artifacts incorrectly (eg. pom file is compared with jar).

3. Finally, we have

a. 7,961 Maven releases of submodules
b. 12,283 artifact pairs

https://github.com/jvm-repo-rebuild/reproducible-central/commit/d280bf1555e2ec6f172b678017b7f00370cb7a00

Nk
FKTHY
’?g VETENSKAP
38 OCH KONST 95

s

RQ1: Causes of Unreproducibility

Reason for Unreproducibility | Root Cause of Unreproducibility | Novelty | Example Main Mitigation
Environment - Built-By attribute Canonicalization by rebuilder
Build Manifests Rebuild Process - Build-Jdk attribute Fix rebuild process
Non-deterministic configuration v Embedded branch names Fix build process
Java Vendor v Different checksum algorithms Fix rebuild process
SBOM Custom release configuration v Releasing a subset of artifacts Fix build process
Non-deterministic information v Timestamp Canonicalization by rebuilder
Fleaptiarn Environment - Permissions Canonicalization by rebuilder
Custom release configuration v Generated binaries are not included | Fix rebuild process
JDK Version - Ordering of constant pool entries Fix rebuild process
JVM Bytecode Embedded data v Git branch embedded Fix build process

Build time generated code

Lambda functions

Canonicalization by rebuilder

Versioning Properties

Number of tags embedded in Jar

Canonicalization by rebuilder

Timestamps - - Embedded in shell script in Jar files | Fix build process
Table 1: Summary of the taxonomy of unreproducibility causes
25-04-2025 Aman Sharma | amansha@kth.se 10

Takeaway: 6 main reasons of

unreproducibility in Java

ks

BTy,
éif’KTH%%

iy Mitigation Strategies

There are 3 mitigation strategies

1. Fix the build process: repairing the build script used by developer to publish package
a. Pros: anyone can replicate the build with O ad-hoc configuration
b. Cons: sometimes you have to embed non-deterministic information like signatures

2. Fix the rebuild process: repairing the buildspec file
a. Pros: contributes to fixes in the build process
b. Cons: can be hard to adapt for future releases

3. Canonicalization: conversion of output artifacts into a standard representation that is free
of non-deterministic changes
a. Pros: past releases can also be verified, no need to rebuild, “i can't find a jdk 14 nowadays”
b. Cons: careful removal as it may mask meaningful differences

We try to evaluate canonicalization since few work in the literature

[9] J. Dietrich, T. White, B. Hassanshahi, and P. Krishnan, ‘Levels of Binary Equivalence for the Comparison of Binaries from Alternative Builds’

sssssssss

Our second goal

Analyze effectiveness of canonicalization in
mitigating reproducible builds

25-04-2025 Aman Sharma | amansha@kth.se

Ak
FKTHY
%:um Kom:g;

Artifact
Canonicalization

[t means that the entire artifact is
transformed by removing

non-deterministic and spurious changes,

especially in metadata.

Eg. ordering of files in archive is made
consistent

Tool used: OSS-Rebuild [10]

https://github.com/google/oss-rebuild

Bytecode
Canonicalization

It is a process of transforming the
bytecode of a program into a
representation that is independent of
specific implementation details inserted
by the compiler.

Eg. implementation of string
concatenation pre and post Java 9

Tool used: jNorm [11]

https://github.com/google/oss-rebuild

s

BTy,
%”KTH%

fxi RQ2: Effectiveness of Artifact Canonicalization

Tool Successful Failed
Canonicalization | Canonicalization

OSS-REBUILD (4ef4c01) 1165 (9.48%) 11118 (90.52%)

CHAINS-REBUILD (6dd67d5) 3036 (24.72%) 9247 (75.28%)

Table 2: Results of OSS-REBUILD and CHAINS-REBUILD on
12,283 artifacts.

OSS-Rebuild: Tool by Google to canonicalize software artifacts.

CHAINS-Rebuild: Fork of OSS-Rebuild with support for canonicalizing build manifests and
embedded versioning properties.

25-04-2025 Aman Sharma | amansha@kth.se

a

Ty,
%KTH%

s RQ2: Effectiveness of Artifact Canonicalization

Tool Successful Failed

00 Canonlcahzatlon Canonlcallzatlon
OSS-R;

CAIN Takeaway 2.5x Increase In
Table : on

w083 Canonicalized artifacts with
ossreout ONNlY @ few Improvements.

CHAINS-Rebulld: Fork ot OSS-Rebuilld with support tor canonicalizing bulld manitests and
embedded versioning properties.

ks

BTy,
éif’KTH%‘x%

=y RQ3: Effectiveness of Bytecode Canonicalization

We select a subset of unreproducible artifacts that have JVM bytecode changes.
This is 898/12,283 artifact pairs.

Successful canonicalization | Failure in canonicalization

267 (29.7%) 487 (53.2%)

Reasons of failure:

Structural Changes problems (eg. changes in order of methods, fields, etc)
Control flow problems (eg. ifne and ifeq)

1

2.

3. Embedded data (eg. absolute file paths)

4. Optimization problem (eg. string concatenation)

ats

Ty,
éif’KTH%‘x%

§ i RQ3: Effectiveness of Bytecode Canonicalization

We select a subset of unreproducible artifacts that have JVM bytecode changes.
This is 898/12,283 artifact pairs.

Takeaway: 4 categories of
Improvements for bytecode
e canonicalization.

2. Control Tiow probiems (eg. IThe ana ITeq)
3. Embedded data (eg. absolute file paths)
4. Optimization problem (eg. string concatenation)

ks

BTy

(55 Future Work

aws®
1. Formalize the notion of acceptable canonicalization; what to remove and what to keep?

2. More features for canonicalization in OSS-Rebuild.

3. Integration of canonicalization into Reproducible Central infrastructure?

S&%&Xfﬁ?ézg
Conclusion
1. A comprehensive taxonomy of unreproducible builds in Java and their

mitigation.

2. Artifact and bytecode canonicalization in conjunction can be used to
mitigate unreproducibility.

by

Sy,
EZKTHY

VETENSKAP
28 OCH KONST %

s

25-04-2025

Thank you!

Aman Sharma
Paper Draft:

Aman Sharma | amansha@kth.se

21

mailto:amansha@kth.se
https://algomaster99.github.io/publications/by-the-pool/paper.pdf
https://algomaster99.github.io/publications/by-the-pool/paper.pdf

