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Augmenting Diffs With Runtime Information
Khashayar Etemadi, Aman Sharma, Fernanda Madeiral, Martin Monperrus

Abstract—Source code diffs are used on a daily basis as part of code review, inspection, and auditing. To facilitate understanding,
they are typically accompanied by explanations that describe the essence of what is changed in the program. As manually crafting
high-quality explanations is a cumbersome task, researchers have proposed automatic techniques to generate code diff explanations.
Existing explanation generation methods solely focus on static analysis, i.e., they do not take advantage of runtime information to
explain code changes. In this paper, we propose COLLECTOR-SAHAB, a novel tool that augments code diffs with runtime difference
information. COLLECTOR-SAHAB compares the program states of the original (old) and patched (new) versions of a program to find
unique variable values. Then, COLLECTOR-SAHAB adds this novel runtime information to the source code diff as shown, for instance, in
code reviewing systems. As an evaluation, we run COLLECTOR-SAHAB on 584 code diffs for Defects4J bugs and find it successfully
augments the code diff for 95% (555/584) of them. We also perform a user study and ask eight participants to score the augmented
code diffs generated by COLLECTOR-SAHAB. Per this user study, we conclude that developers find the idea of adding runtime data to
code diffs promising and useful. Overall, our experiments show the effectiveness and usefulness of COLLECTOR-SAHAB in augmenting
code diffs with runtime difference information.
Publicly-available repository: https://github.com/ASSERT-KTH/collector-sahab.

Index Terms—Code diff, dynamic program analysis, runtime differencing, code review.

✦

1 INTRODUCTION

A software program evolves based on a series of changes
to its source code. Developers are the gatekeepers of this
evolution. Typically, they read, analyze, and ensure the
quality of the code difference (hereafter, code diff) between
two versions of a program, a best practice known as code
review [1]. Listing 1 shows an example code diff that fixes a
bug in Java, with the typical highlighting provided by IDEs
and code review systems.

To facilitate the code reviewing process, various forms
of explanations may be added to code diffs, such as commit
messages [2], code comments, and pull request descriptions
[3]. As manually crafting a high-quality explanation is time-
consuming and may be neglected by developers [4], [5], [6],
researchers have proposed techniques to automatically gen-
erate code diff explanations. Currently, explanation genera-
tion mostly focuses on static information, that is extracted
from the code change without running the program [2],
[4], [7]. However, runtime information is a great source of
data for explaining code diffs [8]. For example, to properly
understand the change in Listing 1, developers may need
to know the impact of the condition change on the runtime
value of variable numericalVariance.

In this paper, we present a study on using runtime infor-
mation for explaining code diffs. This is a challenging task
because there is an overwhelming number of events and
values happening at runtime. This endeavor requires three
components: first, a proper algorithm to monitor and select
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1 public double getNumericalVariance() {
2 - if (!numericalVarianceIsCalculated) {

3 + if (!(sampleSize <= numberOfSuccesses)) {

4 numericalVariance = calculateNumericalVariance();
5 numericalVarianceIsCalculated = true;
6 }
7 return numericalVariance;
8 }

Listing 1: A typical diff for a bug-fixing code diff, with state-
of-the-art highlighting as found e.g. on Github.

data during the execution of both the original and patched
versions of a program; second, an efficient algorithm to
extract runtime differences between the collected traces;
third, the extracted runtime differences should be integrated
into code diffs in a useful manner for code reviewers.

In this paper, we propose COLLECTOR-SAHAB, a novel
system to augment code diffs with runtime informa-
tion. Given a code diff and a test case written in Java,
COLLECTOR-SAHAB runs the test on both versions and
uses Java bytecode instrumentation to collect program states
during the execution, where program states consist of val-
ues assigned to specific, relevant variables. After collecting
program states, COLLECTOR-SAHAB employs an original
algorithm to find the variable values that are unique, in the
sense that they only occur in one execution of the program
under test. The first relevant unique variable value is added
to the code diff to obtain an augmented diff, that is a diff with
both static and dynamic differences. COLLECTOR-SAHAB is
the first tool that augments code diffs with relevant runtime
difference information.

To assess the effectiveness of COLLECTOR-SAHAB, we
run it on 584 code diffs from the bug benchmark De-
fects4J [9]. Our results show that COLLECTOR-SAHAB de-
tects a unique program state for 95% (555/584) of the
code diffs in the benchmark. This outperforms the most
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related work, DIDIFFFF [10]. DIDIFFFF is a web application
to view the runtime value differences of a Java program.
To assess COLLECTOR-SAHAB’s applicability, we perform a
field study on 50 code diffs from a diverse set of 10 real-
world open-source projects. COLLECTOR-SAHAB success-
fully analyzes 96% (48/50) of these code diffs. We conduct
a manual analysis on 30 of those real-world code diffs for
which COLLECTOR-SAHAB augments the diff with runtime
differences. This manual analysis confirms the usefulness
of COLLECTOR-SAHAB in terms of correctness, understand-
ability, and causal relation with the intended runtime be-
havioral change. Finally, we perform a user study and ask
eight participants to rate them in terms of their usefulness,
clarity, and novelty. The results confirm that developers
find augmenting code diffs with runtime data a useful and
promising practice.

To sum up, COLLECTOR-SAHAB is a novel tool that goes
beyond existing explanation tools that only focus on static
data [7], by integrating runtime differences into code diffs.
COLLECTOR-SAHAB is the first approach that can provide
developers with a concise set of runtime differences, usable
for code review.

To summarize, we make the following contributions:
• We introduce COLLECTOR-SAHAB, a new system for

augmenting code diffs with runtime information based
on advanced execution monitoring, effective runtime
data differencing, and well-integrated rendering for
developers. COLLECTOR-SAHAB is publicly available at
https://github.com/ASSERT-KTH/collector-sahab.

• We report original results of an evaluation of
COLLECTOR-SAHAB’s effectiveness in capturing run-
time differences for 584 code diffs in Java. The results
show that COLLECTOR-SAHAB reports a runtime differ-
ence for 95% (555/584) of the code diffs. COLLECTOR-
SAHAB outperforms DIDIFFFF, the state-of-the-art tool
in this domain, which only reports differences for 64.2%
(377/584) of the cases.

• We perform a manual analysis on runtime differences
detected by COLLECTOR-SAHAB for 30 code diffs from
real-world, complex projects. This analysis confirms
that COLLECTOR-SAHAB augmented diffs are correct,
understandable, and successfully exclude random run-
time differences.

• We report the results of an original user study on code
diff augmentation with runtime data. The results of this
study and our interview with the participants show that
developers find COLLECTOR-SAHAB helpful.

The rest of the paper is organized as follows. In Section 2,
we review the foundational concepts used in this paper.
In Section 3, we explain how COLLECTOR-SAHAB works.
Section 4 and Section 5 present the protocol that we use for
our experiments and their results. Section 6 discusses the
threats to the validity of our results. In Section 7, we review
the related work. Finally, in Section 8 we conclude the paper.

2 CORE CONCEPTS

In this section, we review three foundational concepts of our
paper: program state, state depth, and breakpoint.

The first core concept that is used in this work is pro-
gram state. This concept is approached in different forms

in previous work. Zeller defines program state as the set of
program variables and their values [11], which is used by
other researchers as well [12]. There are also more broad
definitions for program states. For example, Xu et al. [13]
also consider the call stack and program counter to be a part
of the program state. Meinicke et al. [14] take heap objects
as a part of the program state as well.

In the literature, there also exist program state definitions
that are more narrow and tailored to the task under consid-
eration. For example, the set of variables considered in the
program state can be limited to variables used at a particular
location [15], [16], can be fixed [17], can be in-scope variables
at a particular execution point [18], can be variables assigned
at a certain point in program [19], or finally variables that are
read or written before a certain location [20]. Considering
those various definitions from the literature, we attempt to
generically define “program state” as follows.

Definition 1 (Program State – Generic). A program state s
is the set of all variables Vl and their values accessed at a
certain line l of a program p that is being executed.

There are two points to be noted regarding our definition
of program state. First, since a line of a program may
be executed multiple times during one single execution, it
is possible to collect multiple program states for a given
program line. Secondly, the read or written variables can
refer to either primitive or non-primitive datatypes. This
means the program state may include objects. The boundary
of what constitutes an object at runtime is ambiguous. To
fully capture the content of an object, we have to go inside
the object and read the content of its fields, recursively. This
leads us to the definition of state depth, as follows.

Definition 2 (State Depth). A program state s with depth d
collected at line l consists of all values for primitive variables
inside objects accessed at l that can be reached with at most
d steps.1

For example, consider Listing 2, which shows a class
“Student” and an object of that class that the variable
“student1” refers to. The Student class contains a student’s
name, her supervisor’s name, and her supervisor’s edu-
cation information. The object “student1” is serialized in
JSON-like format at the bottom of the listing. If the state
depth is set to 3, we collect all the information inside the
object presented in Listing 2. If depth is set to 2, we do
not collect the data inside “student1.supervisor.education”.
If depth is set to 1, we do not collect the data inside
“student1.supervisor”. Finally, if depth is set to 0, we do
not collect any data inside “student1”. In fact, when depth
is set to 0, the program state only includes the value of
primitive variables and excludes non-primitive objects such
as “student1”.

To collect the program states during execution, we have
to specify the lines at which the states should be collected.
This corresponds to the well-known debugging concept of
“breakpoint”. In debugging, breakpoints are used to sus-
pend the program at a certain point of execution and explore
the program state [21].

1. In our prototype implementation for Java, we consider the nine
following datatypes as primitive: int, byte, short, long, float, double,
boolean, char, and string.

https://github.com/ASSERT-KTH/collector-sahab
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1 Datatypes in Java-like syntax:
2 class Student {
3 String name;
4 Supervisor supervisor;
5 }
6 class Supervisor {
7 String name;
8 Education education;
9 }

10 class Education {
11 String university;
12 String city;
13 }
14

15 An object of the student datatype, serialized in JSON-like
syntax:

16 {
17 "student1": { depth ≥ 1

18 "name": "Alice", depth ≥ 1

19 "supervisor": { depth ≥ 2

20 "name": "Bob", depth ≥ 2

21 "education": { depth ≥ 3

22 "university": "KTH Institute", depth ≥ 3

23 "city": "Stockholm" depth ≥ 3

24 }
25 }
26 }
27 }

Listing 2: A program state is the runtime information
associated to some datatype. In this example, the “Student”
datatype is shown together with an object of this class
“student1” with its content. The student object contains
more or less information, depending on the observation
depth, in color.

Definition 3 (Breakpoint). A breakpoint is a certain line l of
a program p to be watched during an execution of p.

In this paper, we use breakpoints to collect program
states, without human intervention. As opposed to manual
debugging, no developer is involved. When a breakpoint is
reached, the program execution is resumed right after the
automated program state collection.

3 DESIGN AND IMPLEMENTATION

3.1 Overview

We design and implement COLLECTOR-SAHAB to generate
a concise and useful report of runtime differences caused
by a code change. This report puts the extracted execution
data into a user interface (UI) to present code diffs. We call
this report the augmented diff as it augments the code diff
with dynamic information. Figure 1 represents an overview
of how COLLECTOR-SAHAB works.

COLLECTOR-SAHAB gets an original and patched ver-
sion of a program as well as a test case to execute them
Section 3.2. In the first step, COLLECTOR-SAHAB executes
the test on the original and patched versions of the program
and compares the program states that occur during these
two executions. To collect the program states, COLLECTOR-
SAHAB first identifies breakpoints where the data should be
collected (see Section 3.3) and collects the execution traces
at those lines (see Section 3.4).

Then, COLLECTOR-SAHAB selects and reports a set of
relevant values that occur in the program states of the
original version but are absent in the patched version, and
vice versa (see Section 3.5). This set of values represents

the relevant runtime differences between two versions of a
program. We focus on the relevant values, to make the data
presented to code reviewers more precise [22].

Identifying values that occur only in program states of
one of the versions can require excessive resources, as the
number and size of collected program states can be very
large. To address this issue, COLLECTOR-SAHAB adopts an
effective algorithm to extract the fine-grained data in all
program states and compare them against each other in
massive numbers, see Section 3.5.

Finally, we integrate the extracted relevant execution
differences into the code diffs typically used in code review
(see Section 3.6). The result is an augmented diff, it enables
developers to see runtime differences, together with the
code change.

3.2 Input

Our tool takes in 3 inputs: the original version of the project,
the patched version of the project, and a list of covering
tests. A covering test is a test that runs at least part of the
code that is changed. The challenge is to collect enough data
and filter the interesting bits when running a covering test
on the original and patched versions.

3.3 Breakpoint Identification

Given the original and patched versions, COLLECTOR-
SAHAB first statically analyzes the code to identify the lines
of the program that should be monitored as breakpoints.
Next, a dynamic analysis is performed on these lines to
collect the execution data that is used for runtime difference
detection. For this, COLLECTOR-SAHAB finds a mapping
between the lines of the original and patched versions. We
call them the matched lines as defined below.

Definition 4 (Diff and Unchanged Lines). Given an original
and a patched version of a program source file, diff is the set
of lines that Myer’s [23] algorithm detects as changed lines
between the original and patched versions, as implemented
in git diff. The diff contains a set of code lines deleted from
the original and a set of code lines inserted into the patched.
The remaining lines are the unchanged lines.

Definition 5 (Intra-function Matched Lines). In this paper,
matched lines are all tuples < lo, lp > where lo and lp meet
two requirements. First, lo is a line from the original version
that is unchanged and mapped to lp from the patched
version. Second, lo should be from a method that contains
at least one line of the diff.

For example, Listing 1 shows an example of a patch with
diff at lines 2 and 3. Lines 4, 5, 6, 7, and 8 are matched
lines, for this example. Each of these lines is unchanged
in the code diff and appears both in the original (lo) and
patched (lp) versions. Also, these lines all appear in the
getNumericalVariance() method which contains lines
2 and 3 as the diff. Therefore, lines 4, 5, 6, 7, and 8 meet both
requirements and form the set of matched lines.

COLLECTOR-SAHAB registers breakpoints at all matched
lines in the changed method. We focus on the matched lines
so that we can compare the data between the two versions.
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1 func(x=1) {
-   x = x + 1
+   x = x + 2
2   if x is even

3     return 0
4   if x is odd

5     return 1
6 }

Original 
code

Patched 
code

Covering test

Breakpoint 
identification

Breakpoints 
of original

Breakpoints 
of patched

Input Collector Sahab

Trace of 
original

Trace of 
patched

Trace 
collection

Output

Runtime 
difference

x=2 only in original

x=3 only in patchedVisualization

patch

Sending
Values

Augmented diff

Original

Patched

Program state 
differencing

Instrumentation agent
 running test Config={depth}

Config={rand-exc}

Figure 1: Overview of COLLECTOR-SAHAB.

1 {
2 "breakpoint": [
3 {
4 "file": "foo/BasicMath.java",
5 "lineNumber": 5,
6 "stackFrameContexts": [
7 {
8 "positionFromTopInStackTrace": 1,
9 "location": "foo.BasicMath:5",

10 "stackTrace": [
11 "add:5, foo.BasicMath",
12 "test_add:11, foo.BasicMathTest"
13 ],
14 "runtimeValueCollection": [
15 {
16 "kind": "LOCAL_VARIABLE",
17 "name": "x",
18 "type": "int",
19 "value": 23,
20 "fields": null,
21 "arrayElements": null
22 },
23 {
24 "kind": "LOCAL_VARIABLE",
25 "name": "y",
26 "type": "int",
27 "value": 2,
28 "fields": null,
29 "arrayElements": null
30 }
31 ]
32 }
33 ]
34 }
35 ]
36 }

Listing 3: Example runtime data obatined with COLLECTOR-
SAHAB’s trace collection component.

In theory, the runtime difference can be observed only
after the change. However, COLLECTOR-SAHAB also mon-
itors the lines before the change for two reasons. First,
it enables us to better exclude random changes, see Sec-
tion 3.5. Second, we note that the changed method can be
executed multiple times; hence, a program state difference at
a changed line can affect what happens above a code change
in the method at later executions.

3.4 Trace Collection
After registering the breakpoints, COLLECTOR-SAHAB

runs the covering test on both original and patched versions
and collects the execution trace as defined below.

Definition 6 (Program State – in COLLECTOR-SAHAB)). The
program state s that COLLECTOR-SAHAB collects once a
breakpoint b at line l is executed consists of the set of all
variables Vl visible at l and their values, as well as the
method calls leading to the execution of b. In practice,
the program state object that COLLECTOR-SAHAB collects
contains the following information:

• file is source file where b is located.
• lineNumber is the line number where b is located.
• stack frame context includes : the stack trace and the

runtime value collection as follows.
• stack trace is the list of program lines that called a series

of methods before reaching b during the execution.
• runtime value collection is the set of all variables and their

values that are visible when the execution reaches b.
This includes all local variables and class fields visible
at b. If the variable is an array, all of its elements are also
collected, and if it is a non-primitive variable, all the
fields inside the object that it refers to are also stored.
We note that COLLECTOR-SAHAB considers strings as
primitive variables.

Note that COLLECTOR-SAHAB considers all visible vari-
ables at a line to compute the program state. This means
even the variables that refer to objects of classes in
third-party libraries are monitored. Therefore, COLLECTOR-
SAHAB also detects runtime differences involving library
objects.

Definition 7 (Execution Trace). In this paper, an execution
trace is defined as the sequence of all program states that
COLLECTOR-SAHAB collects during the execution of a test
covering a change. Note that since every inserted breakpoint
can be executed multiple times, the trace may include one
or more program states per breakpoint.

The collection of execution traces is done as follows. Be-
fore the initiation of test execution, we instrument the Java
classes to collect the local variables, field, and return values
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at breakpoints. During the execution of the tests, the instru-
mented code is invoked and we save the runtime value as
Java objects in memory. To avoid exceeding memory, the
values of variables are collected only up to a state depth
that is given as part of COLLECTOR-SAHAB’s configuration
(see Section 2). Eventually, when the test execution finishes,
we output a serialized version of program states to disk.
The program states are stored in the output file in the same
order as they occur during the execution of the program.

Listing 3 shows the execution trace collected during
the execution of test BasicMathTest::test_add. In this
example, one program state is collected. This program state
is for line 5 of the file foo/BasicMath.java. There are
two variables whose values are stored in this trace: x=23
and y=2.

3.5 Program State Differencing
We now explain how COLLECTOR-SAHAB computes the
runtime difference between two versions. We devise a novel
algorithm whose overarching goal is to produce a concise
runtime difference that makes sense to developers. For this,
we first define our key concept of state value, before its qual-
ified version as relevant state value, and unique relevant
state value.

Definition 8 (State value). For a given program state s
corresponding to a breakpoint b located at line l, a state
value is a tuple < l, path, value >. In this tuple, l is the line
of b, path is the path to a primitive variable inside runtime
value collection of s, and value is the value of that primitive
variable.

The path in a state value specifies how a primitive vari-
able can be accessed at the given line. Path appears in form
of a list of variable names concatenated with dots such as
v1.v2...vn. v1 is an object accessible at l, vn is a primitive
variable, and vi is a field in the object referred by vi−1.
Note that we only consider paths primitive variables in state
values. The value for a non-primitive variable is an object
reference which is not understandable for developers, hence
we do not take them as a part of the state value.

State value is the most fine-grained data that can be
extracted from an execution trace. We compute all state
values inside the collected execution trace to compute the
runtime difference.

In Listing 2, if “student1” is the variable whose value
is collected in program state s at a breakpoint at line l, the
following are the state values that we extract for s:

<l,student1.name,“Alice”>
<l,student1.supervisor.name,“Bob”>
<l,student1.supervisor.education.university,“KTH Institute”>
<l,student1.supervisor.education.city,“Stockholm”>

Definition 9 (Relevant State value). A state value <
l, var1..., val > is considered relevant, if and only if var1
is accessed on line l.

Definition 10 (Unique Relevant State value). A state value
is said to be unique if it only appears on the original or
patched version. < l, var.∗∗, val > is a unique relevant state
value if it is a relevant state value in the original version,
and < l′, var. ∗ ∗, val > is not a relevant state value in

Algorithm 1 Algorithm for program state differencing.

Inputs:
ot: The trace collected for the original version
pt: The trace collected for the patched version
osrc: The source of the original version
psrc: The source of the patched version

Outputs:
ousv: List of unique relevant state values in the
original trace
pusv: List of unique relevant state values in the
patched trace

1: oes← program_states(ot)
2: pes← program_states(pt)
3: osv ← GET_STATE_VALUES(osrc, oes)
4: psv ← GET_STATE_VALUES(psrc, pes)
5: ousv ← GET_UNIQUE_STATES(osv, psv)
6: pusv ← GET_UNIQUE_STATES(psv, osv)
7: return (ousv, pusv)
8:
9: function GET_STATE_VALUES(src, ess)

10: SV ← []
11: for each execution_state es in ess do
12: line← es.line
13: rv ← relevant_vars(src, line)
14: for each variable_data vd in es do
15: if rv.contains(vd.name) then
16: cur_SV ← EXTRACT_SVS(line,

””, vd)
17: SV.insert(cur_SV )

18: return SV
19: function EXTRACT_SVS(line, prefix, vd)
20: SV ← []
21: if is_primitve(vd) then
22: sv_id =

line+ prefix+ vd.name+ vd.value
23: SV.insert(sv_id)
24: return SV
25: for each field_data ivd in vd do
26: SV.insert(EXTRACT_SVS(line, rv,

prefix+ vd.name, ivd))

27: return SV
28: function GET_UNIQUE_STATES(left_sv, right_sv)
29: SV ← []
30: for each state_value sv in left_sv do
31: if ! right_sv.contains(sv) then
32: SV.insert(sv)

33: return SV

the patched version where l′ is the line mapper to l in the
matched lines. Conversely, < l′, var. ∗ ∗, val > is a unique
relevant state value if it is a relevant state value in the
execution trace of the patched version and < l, var.∗∗, val >
is not among the relevant state values of the execution trace
of the patched version.

Algorithm Algorithm 1 describes the algorithm we em-
ploy to compute the execution differences. The inputs to
the algorithm are the collected traces for the original (ot)
and patched (pt) versions as well as the original (osrc) and
patched (psrc) versions of the source code. The algorithm
outputs the unique relevant state values for the original
(outsv) and patched (pusv) versions.

The algorithm first extracts the program states saved
in collected traces for each version (lines Algorithm 1 and
Algorithm 2). Note that each collected trace contains the list
of all program states that the trace collector has encountered
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while executing the matched lines. These program states are
saved in the same order as they occur during the execution.

Next, all state values are computed for each
version (lines Algorithm 3 and Algorithm 4). The
GET_STATE_VALUES method at line Algorithm 9 traverses
program states one by one (line Algorithm 11). For each
state, it gets the program line where that state has hap-
pened (line Algorithm 12) and the relevant variables at that
program line (line Algorithm 13). Note for each line, the
relevant variables are the ones that are accessed to be read
on that line. Then, for each variable data vd that corresponds
to a relevant variable (see line Algorithm 15), we get all state
values linked to it by calling the EXTRACT_SVS method (line
Algorithm 16).

The EXTRACT_SVS method (line Algorithm 19) discovers
all state values that can be extracted from a given variable,
recursively. For a given primitive variable, the algorithm
adds its variable name and value to the state values set
(lines Algorithm 21-Algorithm 24) and returns it. For non-
primitive variables, the algorithm looks into the fields of
the object that the variable is referring to one by one (line
Algorithm 25). Per each field in the referred object, EX-
TRACT_SVS is called recursively (line Algorithm 26). When
the state values are extracted for all the fields of the referred
object, the resulting collection of state values is returned
(line Algorithm 27).

After running lines Algorithm 3 and Algorithm 4, the
state values that occur in the original and patched versions
are saved in osv and psv, respectively. To compute the
unique relevant state values for each version, we iterate
over the extracted state values and identify the ones that
are not included in the state values of the opposite version.
The GET_UNIQUE_STATES method that is called on lines
Algorithm 5 and Algorithm 6 does exactly this. The result
of calling this method is then saved in ousv and pusv, which
form the returned result of the program state differencing
algorithm.

Note that Algorithm 1 explains how unique state values
are extracted. COLLECTOR-SAHAB also computes unique
program states in three steps. First, it maps each program
state of each execution trace to the hashed version of that
program state. For this, the Java string hashing algorithm
is used. Second, the hashes are compared to each other to
detect unique program state hashes. Finally, COLLECTOR-
SAHAB looks back to the mappings to find the original
program states mapped to the detected unique hashes. The
result is the list of unique program states in each of the
original/patched execution traces.

As Figure 1 shows, COLLECTOR-SAHAB also has
a random-exclusion configuration for the program
state differencing state, noted as Config=rand-exc in
the figure. When random-exclusion is set to true,
COLLECTOR-SAHAB excludes state values that show ran-
dom behavior, i.e. not having identical values accross runs.
Using this setting enables the users to focus on runtime
differences that are causally related to the code changes. For
this purpose, COLLECTOR-SAHAB takes two steps. First, it
does not consider values of variables that refer to file paths.
This step is taken because our experiments on real-world
commits show that, most of the time, file paths change
on different system environments. This means a runtime

Figure 2: The augmented diff generated by COLLECTOR-
SAHAB for a code diff for Math-80, showing important
runtime information.

difference in file paths is usually because of a change in
the environment, not a change in the logic of the program.
In the second step, COLLECTOR-SAHAB runs each version
of the program three times and only keeps state values that
appear in all three runs. This step excludes values that reflect
flaky behavior of a program. Excluding random state values
generates a code diff augmentation that shows the crucial
behavioral changes caused by the code changes.

3.6 Output & Visualization
The output of the tool is a runtime difference in two
forms: a textual file and a visualization. The textual file
contains all unique program states and unique state values.
It is intended to be used by other tools, i.e. it is not user-
facing. For example, such an output can be used by program
repair tools to suggest non-overfitting patches based on
runtime data. The other output is aimed at developers, it
is a visualization of the runtime difference (see Figure 2).
This visualization, which we call the augmented diff, is only
generated when a unique state value is identified, and
detecting a unique program state is not sufficient to produce
an augmented diff.

Textual Output. The main textual output of COLLECTOR-
SAHAB is a file containing all unique program states and
unique relevant state values for both the original and
patched versions. Also, all the traces collected at the trace
collection step (Section 3.4) are stored in a separate file.
These textual outputs can be consumed by other tools based
on their own needs. We believe that COLLECTOR-SAHAB
will be used as a foundation for future research on dynamic
analysis.

Visual Output. COLLECTOR-SAHAB uses the unique state
values extracted in the previous step to produce a user-
friendly user interface (UI), which we call the augmented
diff. This UI adds runtime information to the typical code
diff view, e.g. that of GitHub. This new graphical component
shows the first unique relevant state values for both the
original and patched versions. We consider the first unique
state values as the program state differences for two reasons.
First, there are usually many unique state values, which
is overwhelming for developers. Second, the literature has
shown that the first point of execution divergence is the
most relevant for code reviewers [24].

Figure 2 shows an example of an augmented diff for a
code diff for the Math-20 bug. This generated UI clearly
indicates that after changing how variable j is computed in
line 1135, the variable is assigned a new value in the patched



7

version. As shown in Figure 2, a code reviewer directly
sees that the execution of test testMathpbx02 reveals
that j=24 only occurs in the patched version and j=27
only occurs in the original version. By displaying those
concrete runtime differences caused by the code change,
COLLECTOR-SAHAB helps code reviewers to make an in-
formed decision about the appropriateness of a code diff.

3.7 Implementation

COLLECTOR-SAHAB is an advanced tool made of 5,800
sophisticated lines of Java code, built using Java 11 and
relying on ASM and Byte Buddy for instrumentation. All
of the tool’s source code is publicly available2.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

In this paper, we study the following research questions.
• RQ1 (effectiveness): What is the effectiveness of

COLLECTOR-SAHAB to detect runtime differences in
bug fixing code diffs? We run COLLECTOR-SAHAB on
a large dataset of bug fixing APR code diffs from
the DRR [25] dataset. We compare COLLECTOR-SAHAB
effectiveness with DIDIFFFF [10] as baseline.

• RQ2 (applicability): To what extent does COLLECTOR-
SAHAB perform on augmenting diffs from real-world
projects? We assess COLLECTOR-SAHAB applicability
on real-world commits. This improves the external va-
lidity of our evaluation beyond the projects of DRR.

• RQ3 (quality): What is the quality of the diffs
augmented with runtime differences generated
by COLLECTOR-SAHAB? To assess the quality of
COLLECTOR-SAHAB reports for code reviewers,
we conduct a manual analysis to evaluate their
quality with respect to two criteria: correctness
and understandability. We also manually check the
accuracy of COLLECTOR-SAHAB in excluding random
runtime differences. This analysis is performed on the
real-world commits also used in the RQ2 experiment.

• RQ4 (user study): How do software developers assess
COLLECTOR-SAHAB’s augmented diffs? We conduct a
user study and ask developers to rate COLLECTOR-
SAHAB augmented diffs in terms of usefulness, un-
derstandability, and novelty. To compare COLLECTOR-
SAHAB against the state of the art, we also ask the
participants to give a score to DIDIFFFF outputs. In this
study, we use the real-world commits collected for the
RQ2 and RQ3 experiment.

4.2 Datasets

We use two different datasets for our experiments: MVN-
DRR and RW3.

MVN-DRR is used for assessing the effectiveness of
our tool (RQ1). This dataset contains a subset of code diffs
from Ye et al.’s previous research [25]. Ye et al.’s DRR is a
collection of 638 code diffs generated by 15 program repair
tools for bugs in the Defects4J dataset [9]. Defects4J includes

2. https://github.com/ASSERT-KTH/collector-sahab

bugs from five different projects: “jfreechart”, “closure-
compiler”, “commons-lang”, “commons-math”, and “joda-
time”. In MVN-DRR, we select DRR code diffs that meet
two conditions. First, the project should be a maven project
with a “pom.xml”. This means we can successfully build
both the original and code diffs versions by running a
“mvn compile”. Second, the code diff changes should all
appear in one single java method. We focus on single-
method code diffs to make sure there is a single, well-scoped
behavioral change. This means the code diffs that change
multiple files, multiple methods, class declarations, method
declarations, or imports are ignored. The result of these two
filters is that MVN-DRR contains 584 code diffs from two
projects: “commons-math” and “joda-time”, appropriate for
our experiments.

Our second dataset is RW3, which is used to study
COLLECTOR-SAHAB applicability in the field, on a diverse
set of complex real-world projects (RQ2 & RQ3 & RQ4). RW3
contains human-made code diffs 3 from GitHub repositories.
To create this dataset, we first start by filtering repositories
on GitHub. We select public Java repositories that are not
archived and have a Codecov or Coveralls configuration
file at the root of the repository. We consider projects using
Codecov or Coveralls as they tend to be well-tested, which
makes them appropriate for our experiments. To make
sure the chosen repositories are well-established we select
repositories that have 50 stars or more. These filters return
a list of 158 repositories. Then, we scan these repositories
for code diffs, excluding merge code diffs, from 2022-08-
13 to 2022-09-12 which change exactly one file that meets
two requirements. First, the changed file is a Java file, and
second, the whole change lies inside a single method, to
be consistent with RQ1. We perform manual analysis on
each code diff to eliminate those where the code diff is not
covered by a test, the project fails to compile, or we fail to
execute the tests that cover the change. The resulting RW3
dataset contains 50 code diffs from 10 GitHub repositories
as shown in Table 1.

In Table 1, we give the total number of commits, mod-
ules, and lines of code (KLOC) per considered project to
give a sense of their complexity. As shown in the table, the
median number of code diffs, modules, and lines of code are
6,069, 8, and 175K. This indicates that the projects in RW3 are
established repositories with real-world complexity. These
statistics confirm that the RW3 code diffs are selected from
complex, real-world repositories. If COLLECTOR-SAHAB
works on them, it is a good indicator of the quality of our
approach and its prototype.

4.3 Baseline
There are very few runtime differencing tools that are avail-
able. In our work, we focus on Java, and there is one single
open-source runtime differencing tool for Java, DIDIFFFF
(pronounced di-di-fu-fu) [10].

Consequently, in our experimental evaluation, we con-
sider DIDIFFFF as the baseline. DIDIFFFF runs two versions
of a program and illustrates the difference between the
values assigned to program variables in a web interface.
DIDIFFFF uses SELOGGER [26] to record all the values each

3. We consider each commit in GitHub as a code diffs.

https://github.com/ASSERT-KTH/collector-sahab
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Table 1: Descriptive statistics of open-source projects in-
cluded in benchmark RW3.

Repository #commits #modules KLOC

codingapi/springboot-framework 178 5 3
nosan/embedded-cassandra 2,149 1 12
infinitest/infinitest 489 7 25
jhipster/jhipster-lite 6,413 1 90
schemacrawler/SchemaCrawler 8,198 23 148
alibaba/nacos 4,224 18 203
apache/dubbo 5,725 27 229
cdk/cdk 17,263 9 502
apache/iotdb 7,364 43 591
JMRI/JMRI 74,997 1 4,741

Min 178 1 3
Median 6,069 8 175
Max 74,997 43 4,741

variable of a program holds during an execution. Using
these values, DIDIFFFF creates two lists of values for each
variable access that is not part of the code change. The
first list represents the values assigned to the variable at
that point of access in the original version. The second list
represents values assigned to the variable in the patched
version of the program. Finally, DIDIFFFF compares the two
lists of values for each variable access. The result of this
comparison is presented to code reviewers in form of a
graphical user interface (GUI). This GUI shows the two lists
of values assigned to a variable and highlights if there is
a difference between these two lists. An example output of
DIDIFFFF can be seen at https://bit.ly/3N7TKEb.

DIDIFFFF reports two types of runtime differences: 1) the
difference in the content of the list of values assigned to
primitive variables, and 2) the difference in the length of the
list of values assigned to non-primitive variables. Regarding
non-primitive variables, DIDIFFFF only counts how many
values are assigned to them, it does not consider what is
inside those values. That is because DIDIFFFF does not look
deep into the objects referred by non-primitive variables,
which makes it significantly different from COLLECTOR-
SAHAB.

4.4 RQ1: Effectiveness on Benchmark
To answer RQ1, we run COLLECTOR-SAHAB on all 584
code diffs in MVN-DRR with four different state depths:
depth=0,1,2,3. This maximum depth of three has been found
empirically, because collecting data for higher depths re-
quires resources beyond our experimental setup without
improving effectiveness.

The key metric is the number of code diffs for which
COLLECTOR-SAHAB augments the diff. We split the remain-
ing code diffs into three groups and count the number of
code diffs in each group. Code diffs for which no unique
state value is detected, code diffs that cause a memory
failure, and code diffs that make COLLECTOR-SAHAB exceed
the time limit.

We also run DIDIFFFF on the MVN-DRR code diffs. We
count the number of code diffs for which DIDIFFFF detects
a runtime difference contrasting it with the number of code
diffs for which COLLECTOR-SAHAB augments the diff.

We perform our experiment on a machine with sixteen
Intel(R) Core(TM) i9-10980XE processors, each running at

3.00GHz and having 18 cores, and eight 16GB RAMs each
of type DDR4 with 3600 MT/s clock speed.

4.5 RQ2: Applicability in the Field

To answer RQ2, we run COLLECTOR-SAHAB on all code
diffs in RW3. Then, we compute the set of code diffs for
which COLLECTOR-SAHAB successfully runs and lists all the
unique state values (if any). These are the successful code
diffs. Next, we get all the repositories corresponding to these
code diffs and call the set of these repositories as successful
repositories.

Finally, we compute the ratio AC =
|successfull_code_diffs|

|all_code_diffs| , which represents the fraction of
code diffs on which COLLECTOR-SAHAB works successfully
and accurately. A high value of AC and a large set of
successful repositories indicate how applicable our tool is
on real-world projects and, from a scientific perspective,
measure the external validity of our results.

4.6 RQ3: Manual Analysis on Augmentation Quality

In answer to RQ3, we conduct a detailed manual anal-
ysis of the outputs of running COLLECTOR-SAHAB on RW3
code diffs. In this analysis, we consider all the successful
code diffs in RW3. This consists of the code diffs for which
COLLECTOR-SAHAB detects a unique state value, and code
diffs for which COLLECTOR-SAHAB does not detect any
unique state values. Note that all code diffs in RW3 are
covered by a test, but the covering test is not required to
fail on the original version and pass on the patched version.
This means the test may not reveal any runtime difference.

For code diffs with no detected unique state value, we
manually verify that the code change does not entail any
unique state value in neither the original nor the patched
version. For each code diff with a detected unique state
value, we study the quality of COLLECTOR-SAHAB aug-
mented diff from three aspects: correctness, understand-
ability, and randomness exclusion accuracy of the detected
runtime difference. In case of negative results for any of the
three mentioned criteria, we investigate the reasons behind
them.

To assess correctness, we manually run the covering test
line by line in a debugger twice, first on the original and
second on the patched versions of the program under study.
We ensure the first unique relevant state value reported by
COLLECTOR-SAHAB matches what we see in the debugger
value explorer.

Regarding understandability, we analyze whether a code
reviewer could understand the reported runtime behavioral
change in a reasonable amount of time (typically 5-30 min-
utes, per typical code review practices at the function level).

Finally, we evaluate the randomness exclusion accuracy
of COLLECTOR-SAHAB to see if its random-exclusion
configuration (as defined in Section 3.5) works accurately
and effectively. We perform this evaluation in two steps as
follows.

First, we divide the commits into two groups. Group
1 contains commits where the unique state value is a
non-random value and Group 2 contains commits wherein

https://github.com/codingapi/springboot-framework/
https://github.com/nosan/embedded-cassandra/
https://github.com/infinitest/infinitest/
https://github.com/jhipster/jhipster-lite/
https://github.com/schemacrawler/SchemaCrawler/
https://github.com/alibaba/nacos/
https://github.com/apache/dubbo/
https://github.com/cdk/cdk/
https://github.com/apache/iotdb/
https://github.com/JMRI/JMRI/
https://bit.ly/3N7TKEb
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the unique state value is reported only because of dif-
ferences in random value. We filter Group 2 commits
by setting random-exclusion=false and then run-
ning COLLECTOR-SAHAB again on these commits with
random-exclusion=true. If the unique state value re-
ported disappears, we consider such commits under Group
2. If after changing random-exclusion a unique state
value is still reported, we consider the commit under Group
1.

In the second step, we manually perform two checks.
In the first check, we investigate if the unique state
values reported for commits in Group 2 are actually
random and no other non-random unique state value
exists. If our manual analysis confirms this, it means
COLLECTOR-SAHAB has performed accurately by not iden-
tifying any unique state value for these commits when
random-exclusion=true. Second, we check if the unique
state values reported for commits in Group 1 are not
random, when random-exclusion=true. Again, if our
manual analysis confirms this, it indicates the accuracy
of randomness exclusion by COLLECTOR-SAHAB. A high
accuracy of randomness exclusion on the commits means
that the random-exclusion configuration of COLLECTOR-
SAHAB is an accurate and highly applicable tool for exclud-
ing runtime differences that are caused by flaky behavior of
programs.

This analysis is conducted by two of the authors, both
experts in Java programming. In case of any discrepancies
between the participants, they meet and discuss to resolve
them and reach a conclusion.

4.7 RQ4: User Study

To answer RQ4, we perform a user study. In this study,
we ask experienced developers to comment on the quality
of COLLECTOR-SAHAB and DIDIFFFF reports. For this ex-
periment, we have two groups of participants: a group of
four participants working in industry, and a group of four
participants studying at our university. All the participants
are experienced in programming with Java language and
creating and merging GitHub pull requests.

For each participant, the experiment is performed in
three steps as follows. First, in a live presentation, we
use some examples to introduce the relevant concepts of
runtime differencing and the two tools (COLLECTOR-SAHAB
and DIDIFFFF) to the participant. Second, we present a
selected set of commits and their augmentations with both
tools. For each commit, the participant gives a score between
1 and 5 to each augmented code diff in terms of usefulness,
clarity, and novelty. Usefulness means whether the report
generated by COLLECTOR-SAHAB helps in understanding
the changes made to the program. Clarity means how com-
prehensible the generated report is. Novelty measures how
novel is the information provided by COLLECTOR-SAHAB in
the sense that it cannot be obtained by looking at the plain
code diff. In the third and final step, we hold a short dis-
cussion with the participant when they have finished rating
the augmented code diffs. In the final discussion, we ask for
an overall feedback regarding code diff augmentation with
runtime data, how the tools compare against each other, and
potential improvements in each tool.

To select the commits that are shown to participants, we
consider the RW3 commits that cause a runtime difference
per our manual analysis in RQ3. We exclude three types
of commits from the RQ3 experiment. First, the commits
that suffer from random runtime differences. Second, if
there are multiple commits changing the same line of a
program, we only show one of them to a participant. Third,
we also exclude commits that change a test method. After
applying these filters, we select a total of 8 commits. We
split these commits into two groups (industry and students)
so that each group gets 4 commits to analyze. This is is an
appropriate number as it fits well within the one-hour time
limit that we set for each participant.

In answer to each question, the participants give a score
between 1 and 5 to the augmented code diff. To have an
overall assessment of the given scores, we first compute
the average score a participant has given to the augmented
diffs of each tool in answer to each question. Then, we
calculate the median score given by participants in each
group (industry/students) to obtain the overall assessment
in relation to each criterion.

Note that for the commits for which only one of the
tools detects a runtime difference, the scores cannot be
compared between the two tools. Therefore, we consider
these commits separately.

In our final live discussion with participants, we ask
them three questions. First, if they think augmenting code
diffs with runtime data can be a useful practice. Second,
we ask them which tool they prefer overall. Finally, we ask
whether they have any specific suggestion for improving
each tool. The answers given by participants help us to see
if this path of code diff augmentation is promising and what
are the best ways to improve the state of the art.

5 EXPERIMENTAL RESULTS

5.1 COLLECTOR-SAHAB Effectiveness (RQ1)
Table 2 shows the results of running COLLECTOR-SAHAB on
584 code diffs from our benchmark MVN-DRR. In each
row, “Diff Tool” shows the used tool and its configura-
tion. More specifically, we run COLLECTOR-SAHAB with
four different depths from zero to three and DIDIFFFF on
the dataset (see Section 2 and Section 3.4). The second
column “Augmented Diff” indicates the number of code
diffs for which a runtime difference is detected and the
diff is augmented with a unique state value. Each of the
remaining three columns explains the failure modes. “No
Diff Detected” indicates the number of code diffs for which
no unique state value in either of the versions is found (see
Section 3.6). Finally, “Memory Failure” and “Time Limit”
show the number of code diffs on which COLLECTOR-
SAHAB faces memory and time limit during execution,
respectively.

Consider “COLLECTOR-SAHAB (depth=1)” in Table 2 as
an example. The table shows that in this case, COLLECTOR-
SAHAB augments the diff with a detected unique state
value for 95% (555/584) code diffs. For most code diffs,
COLLECTOR-SAHAB is reliable to identify an execution dif-
ference between two versions of a program. With depth set
to 1, COLLECTOR-SAHAB faces the memory limit for 1.5%
(9/584) of the code diffs and fails due to exceeding the
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Table 2: Results of running COLLECTOR-SAHAB on 584 code diffs in MVN-DRR.

Diff Tool Augmented Diff No Diff Detected Memory Failure Time Limit

DIDIFFFF 377 (64.5%) 207 (35.5%) – –
COLLECTOR-SAHAB (depth=0) 543 (93.0%) 32 (4.9%) 9 (1.5%) 0 (0.0%)
COLLECTOR-SAHAB (depth=1) 555 (95.0%) 18 (3.2%) 9 (1.5%) 2 (0.3%)
COLLECTOR-SAHAB (depth=2) 554 (94.8%) 16 (2.8%) 13 (2.2%) 1 (0.2%)
COLLECTOR-SAHAB (depth=3) 544 (93.1%) 22 (3.9%) 18 (3.0%) 0 (0.0%)

time limit only for 0.3% (2/584) of the code diffs, which
represents a tiny minority. For the remaining 3.2% (18/584)
of the diffs, COLLECTOR-SAHAB runs successfully but does
not detect any unique state value in either of the versions.
This shows for most of the code diffs the differentiating test
triggers a unique state value that is identified and reported
by COLLECTOR-SAHAB.

As shown in Table 2, COLLECTOR-SAHAB outperforms
the state-of-the-art tool DIDIFFFF. The number of code diffs
for which we have a runtime difference is higher for all
depths, from 93% (543/584) to 95% (555/584) for dif-
ferent depths, while it is 64.5% (377/584) for DIDIFFFF.
COLLECTOR-SAHAB detects and reports a runtime differ-
ence in notably more cases than DIDIFFFF.

Next, we manually analyze the code diffs for which
COLLECTOR-SAHAB or DIDIFFFF fail to generate a diff re-
port. Our analysis indicates that there are three reasons
why COLLECTOR-SAHAB outperforms DIDIFFFF in terms of
identifying runtime differences. First, DIDIFFFF only con-
siders differences between values of primitive types, while
COLLECTOR-SAHAB also considers differences between the
value of non-primitive variables that refer to objects. Second,
DIDIFFFF only considers differences between local variable
values, while COLLECTOR-SAHAB also detects the difference
between the values returned by methods (inside a return
statement without an explicit variable). The third and last
reason that COLLECTOR-SAHAB outperforms DIDIFFFF is
related to DIDIFFFF not logging the variable values inside
inner classes. The latter case is present in our dataset. These
three reasons explain why COLLECTOR-SAHAB is able to
detect more runtime differences compared to DIDIFFFF.

The column “No Diff Detected” shows the number of
code diffs for which COLLECTOR-SAHAB does not find
a unique state vlue. As shown in Table 2, generally, the
number of these cases decreases when depth increases: the
number of code diffs with no diff detected is 32 for depth=0;
this number decreases to 16 for depth=2. This indicates
that COLLECTOR-SAHAB’s power to look deep inside non-
primitive objects adds to its effectiveness in detecting run-
time differences. There is an exception for depth=3, where
the number of code diffs without a detected diff increases
to 22. Per our detailed manual analysis of the logs, the
reason behind this is a problem with one of the libraries
that COLLECTOR-SAHAB uses. This library 4 fails serialize
very large Java object into JSON format. As the size of trace
object collected for depth=3 is as large as 10GB in some
cases, this leads to COLLECTOR-SAHAB failure to detect a
runtime difference. This shows increasing the depth has its
own cost and we should carefully select an optimal depth
for configuring COLLECTOR-SAHAB in a given setup.

4. https://github.com/FasterXML/jackson

In the current version, COLLECTOR-SAHAB stores all the
collected data in RAM during execution and prints the
whole trace of the program under test at the end. As the
entire trace may be very large, it causes memory failure in
some cases. The “Memory Failure” column of Section 5.1
shows that facing a memory limit during COLLECTOR-
SAHAB execution is rare. When the depth is set to zero or
one, we face memory limit issues only for 1.5% (9/584) code
diffs. When depth is set to two or three, the memory limit
causes an issue for 2.2% (7/584) and 3.0% (18/584) of code
diffs, respectively. There is room for further improvement in
this regard, as memory failures can be partially avoided by
printing the execution trace step-by-step. This means there
is a significant potential to improve COLLECTOR-SAHAB
memory usage.

COLLECTOR-SAHAB puts breakpoints at all matched
lines Section 3.3, which means the instrumenter collects the
program state at many places. This adds an overhead during
the runtime and makes the execution take longer than when
the code is not instrumented. With respect to time, the
“Time Limit” column shows that we rarely face cases where
COLLECTOR-SAHAB fails due to time issues. We exceed the
time limit only with depth=1 and depth=2 and only for
0.3% (2/584) and 0.2% (1/584) of the code diffs. This means
COLLECTOR-SAHAB is fast enough to finish its analysis on
most code diffs. We note that COLLECTOR-SAHAB exceeds
the time limit for more cases when depth=1, compared to
when depth=2 and depth=3. This happens while increasing
the depth should make the tool take more time to collect
the trace and compute the diff. The reason is that when
the depth is increased, we may face memory failure or
the library issue mentioned above even before exceeding
the time limit. Therefore, the “Time Limit” case turns into
“Memory Failure” or “No Diff Detected” in such cases.

Overall, we notice that COLLECTOR-SAHAB performs the
best when the depth is set to one by augmenting the diff
for 95% (555/584) of code diffs. Depth=1 outperforms other
depths as it provides an accurate balance between looking
at details (better than depth=0) and collecting too much data
(better than depth=2,3).

Answer to RQ1: What is the effectiveness of
COLLECTOR-SAHAB to detect runtime differences in
bug fixing code diffs?
Our experiment on benchmark MVN-DRR shows that
COLLECTOR-SAHAB is effective at detecting runtime
differences. COLLECTOR-SAHAB augments diffs with
runtime information for 95% (555/584) of the code
diffs in our benchmark, outperforming DIDIFFFF, which
detects a runtime difference in only 64.5% (377/584)
of the code diffs. It is clear that COLLECTOR-SAHAB
enhances the state of the art of runtime differencing.

https://github.com/FasterXML/jackson
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Table 3: Results of running COLLECTOR-SAHAB on RW3.

Repository |ALL| Success AC Failure

JMRI/JMRI 13 12 0.92 1
alibaba/nacos 2 2 1.00 0
apache/dubbo 4 4 1.00 0
apache/iotdb 8 7 0.88 1
cdk/cdk 5 5 1.00 0
codingapi/springboot-framework 1 1 1.00 0
infinitest/infinitest 1 1 1.00 0
jhipster/jhipster-lite 7 7 1.00 0
nosan/embedded-cassandra 1 1 1.00 0
schemacrawler/SchemaCrawler 8 8 1.00 0

Total 50 48 0.96 2

5.2 COLLECTOR-SAHAB Applicability (RQ2)

In our study of COLLECTOR-SAHAB applicability, we run
COLLECTOR-SAHAB on code diffs from benchmark RW3.
The results of this experiment are shown in Table 3. In
this table, the left column indicates the repository id. The
number of all code diffs from each real-world repo is
shown in the “|ALL|” column, per our selection criteria.
As defined in Section 4.5, “Success” represents the number
of all code diffs successfully processed by COLLECTOR-
SAHAB. “AC” is the ratio of code diffs successfully pro-
cessed by COLLECTOR-SAHAB and finally, “Failure” indi-
cates the number of code diffs that COLLECTOR-SAHAB fails
to process.

Consider the repository jhipster/jhipster-lite as an ex-
ample (eighth row). RW3 consists of 7 code diffs from this
repository. COLLECTOR-SAHAB successfully performs on all
7 code diffs, giving AC equal to 1 (7/7).

In total, our selection criteria yield 50 code diffs from
real-world complex projects. They are sampled from a set
of ten diverse open-source projects. COLLECTOR-SAHAB
successfully analyzes 48 code diffs out of a total of 50. For
all repositories, we have at least one successfully processed
code diff. This indicates that COLLECTOR-SAHAB is suc-
cessful in handling diverse Java projects from RW3. With
50 total code diffs and 48 successfully analyzed ones, the
corresponding value of AC is 0.96 (48/50). Notably, the
median AC is 1, because COLLECTOR-SAHAB handles all
code diffs for 6 projects. Such a high value of AC attests the
real applicability of COLLECTOR-SAHAB.

Finally, as shown in the “Failure” column, there are 2
commits where COLLECTOR-SAHAB fails to process the code
diff to collect a runtime diff. Both of them are due to out-
of-memory exception. This can be attributed to the huge
number of states collected. In these cases, either the tool
runs out of heap space while generating the execution trace
(step ‘trace collection’) or while iterating through states to
find a diff (step ‘program state differencing’). It is known
that fine-grain monitoring is very memory intensive [27].

Answer to RQ2: To what extent does COLLECTOR-
SAHAB perform on augmenting diffs from real-world
projects?
To analyze applicability in the wild, we build a
well-formed benchmark of 50 code diffs from 10
complex open-source Java repositories. COLLECTOR-
SAHAB successfully runs on 48 code diffs, which yields
a high success ratio of 0.96. COLLECTOR-SAHAB is able
to handle real-world Java projects, incl. large ones with
multi-module build systems.

5.3 COLLECTOR-SAHAB Augmentation Quality (RQ3)
Per the RQ3 protocol, we run COLLECTOR-SAHAB with

two configurations (random-exclusion=true,false)
and use a Java debugger to analyze the RW3 augmented
code diffs.

First, we analyze the 18 code diffs for which
COLLECTOR-SAHAB does not detect a unique state value
even with random-exclusion=false. Our manual anal-
ysis through the debugger verifies what COLLECTOR-
SAHAB states about these code diffs: they do not entail
any unique state value. This indicates the correctness of
COLLECTOR-SAHAB results on this set of code diffs.

More importantly, there are 30 code diffs for which
COLLECTOR-SAHAB detects a unique state value and gen-
erates an augmented diff. The list of these code diffs is
presented in Table 4. As shown in the table, for 17 of
the code diffs, COLLECTOR-SAHAB outputs a unique state
value with random-exclusion=true. For the remaining
13 code diffs, COLLECTOR-SAHAB detects a unique state
value only with random-exclusion=false. Therefore,
COLLECTOR-SAHAB labels 40% (13/30) of the considered
code diffs as causing random runtime differences. This indi-
cates the notable importance of the random value exclusion
feature on real-world commits.

Table 4 also presents the results of our manual analy-
sis on the correctness, understandability, and randomness
exclusion accuracy of the runtime difference detected for
the code diffs. We define these metrics as follows. Column
“Correctness” shows if COLLECTOR-SAHAB’s augmented
diff matches the difference we witness by debugging the
code. The “Understandability” column shows if it is possible
to understand the augmented diff in a reasonable amount of
time.

Let’s take the code diff #7 as an example, from
project apache/iotdb. COLLECTOR-SAHAB generates the
augmented diff for this code diff as shown in Figure 3.
The message of this commit reads as “Call start() method
before FI really executing” and the plain text code diff also
shows instanceContext.start() is called on line 73
of the patched version. However, this does not show how
calling instanceContext.start() affects the runtime
behavior of the program. Here COLLECTOR-SAHAB comes
in and claims that when this method is not called in the orig-
inal version, startNanos.value of instanceContext
is set to 0 and calling this method in the patch changes
this value. This gives the code reviewer a very concrete
and detailed runtime difference information that cannot
be easily obtained just by looking at the textual diff. Our

https://github.com/JMRI/JMRI/
https://github.com/alibaba/nacos/
https://github.com/apache/dubbo/
https://github.com/apache/iotdb/
https://github.com/cdk/cdk/
https://github.com/codingapi/springboot-framework/
https://github.com/infinitest/infinitest/
https://github.com/jhipster/jhipster-lite/
https://github.com/nosan/embedded-cassandra/
https://github.com/schemacrawler/SchemaCrawler/
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Table 4: Manual analysis of the quality of COLLECTOR-SAHAB’s augmented diffs on real-world code changes.

ID Code diff Correctness Understandability

r
a
n
d
-
e
x
c
=
t
r
u
e

1 SchemaCrawler@07c7368 ✓ ✗
2 SchemaCrawler@55a55de ✓ ✓
3 SchemaCrawler@f950519 ✓ ✓
4 JMRI@0b53ea8 ✓ ✓
5 JMRI@4a30042 ✓ ✓
6 iotdb@5faa9da ✓ ✗
7 iotdb@a3559e5 ✓ ✓
8 iotdb@e5e4f17 ✓ ✓
9 springboot-framework@70b0d12 ✓ ✓
10 jhipster-lite@510a975 ✓ ✓
11 jhipster-lite@5d2a6b8 ✓ ✓
12 jhipster-lite@69a7d5a ✓ ✓
13 jhipster-lite@9162791 ✓ ✓
14 jhipster-lite@e2fc61f ✓ ✓
15 jhipster-lite@f5b592a ✓ ✓
16 cdk@d500be0 ✓ ✓
17 dubbo@29e4e42 ✓ ✓

r
a
n
d
-
e
x
c
=
f
a
l
s
e

18 embedded-cassandra@dcc5818 ✓ ✓
19 SchemaCrawler@5955cd0 ✓ ✓
20 SchemaCrawler@c06131a ✓ ✓
21 SchemaCrawler@451a5a5 ✓ ✓
22 JMRI@3e24272 ✓ ✓
23 JMRI@d21837e ✓ ✓
24 dubbo@bb7f942 ✓ ✓
25 iotdb@35541f4 ✓ ✓
26 iotdb@94657cf ✓ ✓
27 iotdb@e5e4f17 ✓ ✓
28 jhipster-lite@2b38799 ✓ ✓
29 dubbo@6b095f1 ✓ ✓
30 nacos@0cf9c24 ✓ ✓

Total 100% (30/30) 93% (28/30)

manual debugging of the program verifies the correctness of
COLLECTOR-SAHAB’s report for this code diff. This reported
runtime difference in this augmented diff is also easy to
understand.

Overall, the execution difference reported by
COLLECTOR-SAHAB is correct for all 30 code diffs in
our benchmark. Generating a correct augmented diff for
100% of the code diffs indicates that COLLECTOR-SAHAB
is a reliable tool for execution difference detection. Our
manual analysis of the randomness exclusion accuracy
also shows that COLLECTOR-SAHAB correctly determines
whether unique state values are random or not for 100%
of the code diffs. In other words, COLLECTOR-SAHAB is
able to correctly exclude unique state values that are flaky
or related to file paths as explained in Section 3.5. This
indicates that COLLECTOR-SAHAB’s augmented diffs help
developers focus on non-random and runtime differences
causally related to the change.

We also see that the COLLECTOR-SAHAB output for code
diff #6 is not easy to understand. By carefully analyzing
this code diff, we see that the reported runtime difference
is hard to understand because the code change is a multi-
line change and all changed lines affect the reported unique
state value. To understand the augmented diff, we need to
know the value of many variables involved in the code diff.
Recall that we designed COLLECTOR-SAHAB to only show
the first unique relevant state value. This demonstrates the
trade-off between conciseness and comprehensiveness of
the augmented diff. To summarize, COLLECTOR-SAHAB’s
report for the code diff #6 is not easy to understand because

more variable values are necessary for this particular case.

The code diff #1 is another case where the augmen-
tation by COLLECTOR-SAHAB is not easily understand-
able. This augmented code diff is shown in Figure 4. The
detected unique state value is the false value of the
printStackPropertiesSet field in the method variable.
The issue with this runtime data is that it does not state
if printStackPropertiesSet is actually a static field.
Consequently, the user may imply that method is referring
to a not-null object whose printStackPropertiesSet
is set to true, while in fact the value of method is null
in this example. Based on this observation, we envision a
future improvement in COLLECTOR-SAHAB that adds the
type (static/non-static) of the fields to the reported runtime
differences.

Answer to RQ3: What is the quality of the diffs
augmented with runtime differences generated by
COLLECTOR-SAHAB?
The manual analysis of 30 code diffs in the benchmark
RW3 shows that 100% of augmented diffs are correct.
The randomness of the detected unique state values is
correctly determined in 100% as well. For 93% (28/30)
of the code diffs, the reported runtime difference is eas-
ily understandable. Overall, based on our experiments,
we conclude that COLLECTOR-SAHAB is a reliable and
useful tool to understand code changes, beyond purely
syntactic code diffs.

https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/SchemaCrawler_07c7368
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/SchemaCrawler_55a55de
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/SchemaCrawler_f950519
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/JMRI_0b53ea8
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/JMRI_4a30042
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/iotdb_5faa9da
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/iotdb_a3559e5
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/iotdb_e5e4f17
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/springboot-framework_70b0d12
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/jhipster-lite_510a975
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/jhipster-lite_5d2a6b8
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/jhipster-lite_69a7d5a
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/jhipster-lite_9162791
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/jhipster-lite_e2fc61f
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/jhipster-lite_f5b592a
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/cdk_d500be0
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-excluded-res/dubbo_29e4e42.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/embedded-cassandra_dcc5818d80489d3ebc2ed4265d673bc05af08551_1.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/SchemaCrawler_5955cd0506697c04a6dd60f742a4ca53c2c5d9ae_3.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/SchemaCrawler_c06131a25e1dc30e8d2d00d49b6ad06c4fa0c126_3.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/SchemaCrawler_451a5a5a60c76acb7303ffa734c0fedc6ad7de19_3.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/JMRI_3e2427222f6e6822972d54c5a472d493733a01e3_3_random.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/JMRI_d21837e89e76e733333646f7dc02746803164aad_3_random.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/dubbo_bb7f942c5dc1649ff8e0be939639280e44c731a7_0.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/iotdb_35541f457afa7e3075893c633bdb1ea8765a399c_3.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/iotdb_94657cf836ea6407cfd374f36324333e8194b919_3.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/iotdb_e5e4f17f703fa7c8e7623d0a8d3120acb0e89fa6_3.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/jhipster-lite_2b3879966bb1a7a54e8fa90a207e81f37fd1332f_3/1.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/dubbo_6b095f1c68b546c9f0ce72dd91b9c1d2792c60be.html
https://assert-kth.github.io/collector-sahab-experiments/rq2-random-included-res/nacos_0cf9c24086ac904e350fc53b4b9f44e0f439e318.html
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Figure 3: Augmented diff for apache/iotdb@a3559e5, accurately pointing to the first unique relevant state value in the
runtime data.

Figure 4: The augmented diff for SchemaCrawler@07c7368
shows a runtime diff that is hard to understand, due to
reporting a static field value for a null object.

5.4 COLLECTOR-SAHAB User Study (RQ4)

After applying the filters mentioned in Section 4.7, we
end up with eight commits shown in Table 5. It shows, per
commit, the tools that detects a runtime difference. Note

that COLLECTOR-SAHAB detects a runtime difference for all
commits, while DIDIFFFF fails to do this for C4 and C8. The
last column of the table shows the group that the commit
is assigned to. As explained in Section 4.7, the commits
are split into two groups, one group for participants from
industry and one group for students. This gives us four
commits for each group.

Table 6 summarizes the results of the user study. As
shown in the table, P1-P4 are the participants from industry
and P5-P8 are the student participants. For each participant,
the table shows the average score that the participant gives
to the reports of each tool per each considered criterion.
As explained in Section 4.7, three criteria are considered:
“Usefulness”, “Clarity”, and “Novelty”. For each criteria,
the “CS” column represents the scores given to COLLECTOR-
SAHAB and “DD” represents the scores given to DIDIFFFF.
The last column on the right shows the participant pref-
erence overall per the discussion at the end of the study.
Note that the average score per participant is computed for
the scores for which both COLLECTOR-SAHAB and DIDIFFFF
give an output: C1-C3 for participants from industry and
C5-C7 for students. This means the tools are tested on the
same set of commits per participant group and a comparison
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Table 5: Commits considered for the RQ4 experiment, their augmenting tool(s), and assigned group.

ID Commit COLLECTOR-SAHAB DIDIFFFF Group

C1 cdk@d500be0 ✓ ✓ Industry
C2 iotdb@5faa9da ✓ ✓ Industry
C3 SchemaCrawler@55a55de ✓ ✓ Industry
C4 jhipster-lite@9162791 ✓ ✗ Industry

C5 SchemaCrawler@07c7368 ✓ ✓ Students
C6 iotdb@e5e4f17 ✓ ✓ Students
C7 SchemaCrawler@f950519 ✓ ✓ Students
C8 jhipster-lite@f5b592a ✓ ✗ Students

Table 6: Scores given by each participant to augmented diffs generated by COLLECTOR-SAHAB and DIDIFFFF. “CS” and
“DD” represent COLLECTOR-SAHAB and DIDIFFFF, respectively.

Usefulness Clarity Novelty
Particpant ID CS DD CS DD CS DD Preference

In
du

st
ry

P1 3.0 2.3 3.3 3.0 4.3 4.0 COLLECTOR-SAHAB
P2 4.3 2.0 5.0 1.6 4.3 5.0 COLLECTOR-SAHAB
P3 3.6 2.3 3.6 2.6 2.0 2.3 COLLECTOR-SAHAB
P4 2.6 1.3 3.3 1.0 4.3 1.0 COLLECTOR-SAHAB
median 3.3 2.3 3.3 2.1 4.3 3.1 COLLECTOR-SAHAB

St
ud

en
ts

P5 2.0 2.6 3.3 3.0 4.0 3.6 COLLECTOR-SAHAB
P6 3.0 3.3 2.6 3.6 3.6 2.6 DIDIFFFF
P7 2.6 3.3 3.6 3.3 3.6 4.0 COLLECTOR-SAHAB
P8 2.0 3.6 3.0 4.3 2.0 3.0 DIDIFFFF
median 2.3 3.3 3.1 3.4 3.6 3.8 –

between their scores is fair.
For example, consider participant P1. This participant

has given COLLECTOR-SAHAB average scores of 3.0, 3.3,
and 4.3 for usefulness, clarity, and novelty, respectively. All
these scores are greater than or equal to 3, which means
this participant’s view about COLLECTOR-SAHAB is more
positive than negative with respect to all criteria. The av-
erage scores given to DIDIFFFF by this participant are 2.3, 3,
and 4.0 for usefulness, clarity, and novelty, respectively. This
means this participant prefers COLLECTOR-SAHAB in terms
of all criteria, as they have given a higher average score
to COLLECTOR-SAHAB for each of them. Finally, P1 prefers
COLLECTOR-SAHAB overall as shown in the last column.

All the other median scores for COLLECTOR-SAHAB
are above 3, except for median usefulness score given by
students. This indicates the positive attitude of participants
about the tool. Regarding the median usefulness score by
students, we ask the participants what can be improved to
make the augmentation more useful. Per our discussion, we
notice that for two of the commits (C5 and C7) they also
want to see the type of the variable that is taking a unique
value in one version. This is a concrete suggestion for future
improvement of our tool.

We also note that median score that industry participants
give to COLLECTOR-SAHAB is at least one point higher
that the median score they give to DIDIFFFF in terms of
each criteria. This indicates that people from industry find
COLLECTOR-SAHAB more helpful. Per our discussion with
these participants (P1-P4), we realize that they think using
COLLECTOR-SAHAB is more practical, as the data it repre-
sents is more concise and its UI is integrated into GitHub.
In contrast, DIDIFFFF presents all values for all variables,
which takes too long to understand. For the same reasons,
all participants from industry prefer COLLECTOR-SAHAB as

mentioned in the last column of Table 6.

Students give a higher score to DIDIFFFF in term of
usefulness. As mentioned above, the reason is that for two
of the analyzed commits they want to see the type of the
variable with unique value as well. However, in terms of
clarity and novelty, they give the tools very close scores.
The close score for the two tools is also reflected in the
last column for students, as two people prefer COLLECTOR-
SAHAB (P5 and P7), and two prefer DIDIFFFF (P6 and P8).

In the live discussion after the scoring task, we ask the
participants what they think about the idea of augmenting
code diffs with runtime data. All participants have a very
positive view on this idea. The positive view comes from
the fact that these tools can “ease the painful process of
code review” as P4 says, and “help [us] catch unexpected
behavior” as P2 states. This all indicates there is a promising
future for code diff augmentation with runtime data.

We also ask the participants to score the augmented
diff for commits that only COLLECTOR-SAHAB can detect
its runtime difference: C4 and C8. As a result, participants
from industry give a median score of 3, 5, and 2 to C4
in terms of usefulness, clarity, and novelty, respectively.
Students also give a median score of 4, 4.5, and 2 to C8
in terms of usefulness, clarity, and novelty, respectively. The
novelty score is low for these two commits because these
commits are adding/modifying literal strings, which means
the runtime value for the invovled objects can be seen just
by looking at the static code diff.

https://github.com/cdk/cdk/commit/d500be0
https://github.com/apache/iotdb/commit/5faa9da
https://github.com/schemacrawler/SchemaCrawler/commit/55a55de
https://github.com/jhipster/jhipster-lite/commit/9162791
https://github.com/schemacrawler/SchemaCrawler/commit/07c7368
https://github.com/apache/iotdb/commit/e5e4f17
https://github.com/schemacrawler/SchemaCrawler/commit/f950519
https://github.com/jhipster/jhipster-lite/commit/f5b592a
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1 void print100() {
2 for (int i = 1; i <= 100; i++) {

3 for (int i = 100; i >= 1; i--) {

4 System.out.println(i);
5 }
6 }

Listing 4: A code diff that does not produce any new
program state.

Answer to RQ4: How do software developers assess
COLLECTOR-SAHAB’s augmented diffs?
We have performed a user study involving four par-
ticipants from industry and four students, who all
scored COLLECTOR-SAHAB and DIDIFFFF outputs. Six
of the eight participants prefer COLLECTOR-SAHAB
and seven participants have a positive view about code
diff augmentation with runtime data.

6 DISCUSSION

6.1 External Validity
Effectiveness on different targets: In this paper, we focus on
code changes that only modify one method of a Java pro-
gram. Accordingly, as explained in Section 4.4, we evaluate
the effectiveness on 584 single-method code diffs from
MVN-DRR. This is a threat to the external validity of this
study, as it means the effectiveness results may not be gener-
alizable to bigger changes in Java programs. Beyond size, we
emphasize that we carefully build a diverse dataset, namely
RW3, for the RQ2 and RQ3 experiments, from 10 vari-
ous sizable Java projects. The satisfactory performance of
COLLECTOR-SAHAB on this dataset indicates the arguably
wide applicability of COLLECTOR-SAHAB on complex Java
programs.

6.2 Internal Validity
Certainty of manual analysis results: As described in Sec-
tion 4.5, we conduct a manual analysis to assess the useful-
ness of COLLECTOR-SAHAB augmented diffs. This manual
analysis may lead to results that are subjective or uncertain.
To address this, two participants with expertise in Java
programming both perform the analysis and compare their
assessments. In case of discrepancies, they have a thorough
discussion about the results until they make a final conclu-
sion. This protocol is meant to mitigate the threats created
by the subjective nature of manual analysis.

6.3 Code Changes with No Augmentation
There are two types of code diffs that are never aug-

mented by COLLECTOR-SAHAB. First, code diffs that do not
cause any behavioral changes on matched lines. For exam-
ple, refactoring the program by renaming a variable does
not cause runtime differences. Second, there are code diffs
that may cause some behavioral changes but do not produce
any new state values. This happens when the code diff
only changes the order in which state values appear, while
COLLECTOR-SAHAB works with set-based abstractions.

For example, Listing 4 shows the print100() method
that runs a for loop and prints the natural numbers less

than 100. The code diff in this example reverses the for loop
iteration. In this original version (line 2), i goes from 1 to
100 and in the patched version (line 3), it goes from 100 to
1. Consequently, in the patched version, line 4 prints the
numbers in reverse order. Even though the patch changes
the behavior of the program as explained, the set of state
values at the matched (line 4) is the same, they just appear
in a different order. Therefore, COLLECTOR-SAHAB does not
catch the runtime difference in this code diff.

The experiments in this study show that many of the
important code diffs, such as bug-fixes, produce runtime dif-
ferences going beyond value ordering, and are consequently
augmented by COLLECTOR-SAHAB.

6.4 Diff in Runtime Generated Code
In Java, there are different options to generate and add
code to the program at runtime, such as dependency injec-
tion, annotation processing and metaprogramming [28]. In
COLLECTOR-SAHAB, the code added at runtime is not con-
sidered, this is because COLLECTOR-SAHAB adds the break-
points before the execution, by statically matching source
code lines and comparing the two versions, as explained in
Section 3.3. Therefore, COLLECTOR-SAHAB considers a run-
time difference caused by the code added at runtime only
if the difference is reflected in the state values in matched
lines, later in the execution. As future engineering work, one
can improve COLLECTOR-SAHAB by considering the code
added at runtime, with sophisticated runtime analysis. This
however poses UI challenges with respect to presenting the
information to the developers in the diff.

6.5 Scalability of COLLECTOR-SAHAB

In the experiments of this paper, we use COLLECTOR-
SAHAB to augment code diffs that change a single method
in different programs. In answer to RQ2, we see this al-
ready applies to a significant number of real-world commits.
However, to make COLLECTOR-SAHAB as applicable as
possible and run it on all types of commits, incl. commits
that change many different methods, future research will
study scalability in terms of time and memory resources it
needs. As shown in answer to RQ1 and RQ2, facing time
limits is very rare for COLLECTOR-SAHAB. This is because it
just adds an extra computation statement at each line to
extract state values, which does not change the order or
magnitude of the execution time complexity. However, there
are a notable number of code changes studied in RQ1 and
RQ2 on which COLLECTOR-SAHAB fails due to exceeding
the memory limit. In this regard, we first note that the
state depth configuration provided by COLLECTOR-SAHAB
helps users configure the tool to get the most detailed
trace, while avoiding memory failure. Nevertheless, our
careful inspection of the experiments reveal that we can
avoid memory failures even with a very high state depth
by making one technical improvement: COLLECTOR-SAHAB
could write and read the execution trace in small batches.
This engineering improvement would enable COLLECTOR-
SAHAB to compute runtime differences without saving the
whole trace in RAM.
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6.6 Test Suite Inputs

As mentioned in Section 3.2, COLLECTOR-SAHAB needs
a differentiating test as input to be able to detect runtime
differences. This means COLLECTOR-SAHAB does not aug-
ment commits with low quality test suites. For example, in
our search for real-wolrd commits in the RW3 dataset, we
see that we collect 212 commits and 26% (56/212) of them
satisfy all the requirements except having a test that covers
the code diff. Moreover, in Section 5.2, 18 commits have tests
that covers the code diff but none of them shows a runtime
behavioral difference. This entails that a significant number
of real-world commits do not have a strong enough test
suite that includes a differentiating test. A number of tools
have been proposed to amplify test suites and generate such
differentiating tests [29]. In the future, COLLECTOR-SAHAB
can take advantage of such tools to find a runtime difference
for commits without a strong test suite.
7 RELATED WORK

As explained in Section 2, previous studies consider differ-
ent segments of the execution data as part of the program
state, from all variable values [11], [12] or some of the
variable values [15], [16], [17], [18], [19], [20] to the call stack
and program counter [13].

In the following, we first review studies on collecting
execution data and using this data for detecting the be-
havioral difference between two versions of a program.
Next, we look at works focused on improving code diffs
by augmenting them with execution data.

7.1 Collecting Execution Data

Lewis [30] defines the concept of omniscient debugger as a
tool that “works by collecting events at every state change
and every method call in a program”. Different tools have
been created that fully or partially implement this concept of
omniscient debuggers [31]. The state-of-the-art omniscient
debugger is introduced by Shimari et al. [26], [32]. They
introduce SELOGGER, which records events, such as method
entry, method exit, return values, and reading or writing a
value into a variable. In contrast with COLLECTOR-SAHAB,
SELOGGER does not record values that are stored deep
inside visible program objects. This means, compared to
SELOGGER, the logging mechanism of COLLECTOR-SAHAB
provides more information for identifying execution differ-
ences.

Previous studies have also proposed execution trace
collection tools for other programming languages, such as
C/C++. Millnert et al. [33] propose DMCE which adds
probe statements after changed lines of C/C++ programs.
After executing the code diff, they check which probe state-
ments are executed. Based on the probe statement execution
data, they determine which parts of the code diff are cov-
ered.

Magalhaes et al. [34] introduce WHIRO, which collects
program state information in C/C++ programs. WHIRO is
built based on LLVM compiler and instruments the program
at the compiler intermediate representation level. This tool
can be customized to work at different levels of granularity.
It can collect data allocated statically, in the stack or in the

heap. Also, it can be set up to save the graph of relations
between pointers up to a specified depth. Finally, it can be
set up to collect data at different points: only before the
main return, only before function returns, or after each data
store statement. What makes Whiro novel and useful is how
it collects data in an uncooperative environment, like in
C/C++, where the program data does not have a datatype
attached to it. It has to find the relation between low-level
data at the heap and high-level program variables to do so.
In contrast with DMCE and WHIRO, COLLECTOR-SAHAB
collects execution data for Java programs.

Orton and Mycroft propose REHYPE which collects the
executed methods of a Java program [35]. Based on the
collected data they output potential inefficient code in the
program. They also introduce SCOPDA which uses REHYPE
output and suggests concrete improvements to the program
[36]. These two tools work with execution traces of Java
programs, however their goal is different from COLLECTOR-
SAHAB: COLLECTOR-SAHAB uses execution differences to
explain code diffs, while SCOPDA analyzes execution trace
to improve the efficiency of programs.

7.2 Execution Differencing

Execution logs are one of the sources that can be used
to model the execution behavior [37]. Goldstein et al. [38]
present an algorithm to visualize behavioral differences
using execution logs in four steps. First, they remove noisy
lines of the logs that do not play an important role related
to the behavior. Second, they create a finite state automa-
ton (FSA) for each original/patched log using the KTAILS
algorithm [39]. Third, they find the differences between
FSAs and finally, visualize the difference. This algorithm
has been used in real-world setups in later studies [40], [41].
These studies show the effectiveness of Goldstein et al.’s
algorithm in helping developers identify program changes.
The main difference between COLLECTOR-SAHAB and these
works is that in contrast with COLLECTOR-SAHAB, they do
not consider state values to detect execution differences.
This makes COLLECTOR-SAHAB able to identify more fine-
grained differences compared to these log-based differenc-
ing approaches.

Test suites may not execute programs exactly the same
as they are executed in the field [42], [43]. Nevertheless,
it is common to utilize the traces produced during the
execution of test suites to understand program changes [42],
[44]. Some researchers have introduced novel methods to
generate tests that can differentiate between two versions of
a program. Danglot et al. [45] propose DCI. This approach
amplifies existing tests to generate new tests that can detect
behavioral changes in the continuous integration pipeline.
Johnson et al. [46] also use EVOSUITE [47] to generate tests
for a given program. Then, they find two similar tests that
one of them passes and the other one fails on the program.
These tests are utilized to detect the root causes of defects in
a program. These works are complementary to COLLECTOR-
SAHAB. They can create tests that can be used as the input
covering test in COLLECTOR-SAHAB.

Many studies compare execution traces to perform dif-
ferent tasks, such as fault localization [48], [49] and failure
root cause analysis [24], [50]. The most advanced techniques
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for comparing execution traces are TRACESIM [51] and S3M
[52]. These two works compare stack traces that are collected
as ordered lists of lines that are executed before a program
crash. TRACESIM performs the comparison by computing
measures such as edit distance and tf-idf between traces and
their elements. On the other hand, S3M uses deep learning
to determine the similarity between two traces. For this,
they present traces as vectors and then utilize the siamese
architecture [53] to compute the similarity between them.
All these works take the list of executed statements as the ex-
ecution trace, while COLLECTOR-SAHAB also considers state
values. This can make COLLECTOR-SAHAB more precise in
detecting differences in executions.

There are also several studies that compare variable
values to detect what causes differences between two ex-
ecutions [11], [54], [55]. Cleve and Zeller [55] use delta
debugging [54], [56] to narrow down differences between
program states in two executions of a program. The result
is a small set of variable value differences that make one
execution of a program pass and another execution fail.
Other researchers improve the precision of delta debugging
by mixing it with other techniques [50], such as execution
coverage [57], observation-based slicing [58], dual slicing
[59], and hierarchical information [60]. COLLECTOR-SAHAB
is different from these tools mainly because it is focused
on improving the code diff by adding a concise execution
difference between two versions of the program. On the
contrary, these tools are designed to identify the root cause
of a failure.

Abramson et al. have introduced relative debugging [61],
[62], [63], [64], [65], [66]. Relative debugging is implemented
in their tool, called GUARD. GUARD runs two programs and
reports the differences between the values assigned to their
variables at runtime. This is close to what COLLECTOR-
SAHAB does, however GUARD requires the users to spec-
ify the data structures, the variables, the breakpoints, and
the mappings between the variables of two versions. In
COLLECTOR-SAHAB, these steps are all done automatically.
Consequently, COLLECTOR-SAHAB is able to generate one
augmentation for a given code diff, while GUARD acts simi-
lar to a traditional debugger, in which the user interacts with
the tool to collect runtime differences and explore them.

The tool that is most similar to COLLECTOR-SAHAB is
DIDIFFFF [10]. As explained in Section 4.3, DIDIFFFF lists
values assigned to each variable during execution and com-
pares the lists for two versions of a program. DIDIFFFF is
built on top of SELOGGER. There are two main differences
between COLLECTOR-SAHAB and DIDIFFFF. COLLECTOR-
SAHAB explores the data inside complex Java objects, while
DIDIFFFF only considers values of primitive variables. Also,
COLLECTOR-SAHAB only reports a concise execution differ-
ence in its UI output, while DIDIFFFF reports all the extracted
differences.

7.3 Improving Code Diffs
Previous studies have shown how integrating runtime data
into the developers’ working environment helps them better
perform tasks, such as bug fixing and code comprehension
[67], [68]. In this section, we review studies focused on
improving code diffs and making them more understand-
able. This can be done in different ways, such as splitting

code changes into smaller sets of related changes [69] or by
improving how code changes are presented. Our focus is on
the diff presentation.

Some tools improve the code diff presentation by making
it more fine-grained, such as MERGELY [70] and GUMTREE
[71]. For this, MERGELY considers changes at the level of
code elements inside lines, instead of looking at whole line
differences. GUMTREE enhances existing AST differencing
algorithms, such as CHANGEDISTILLER [72], and proposes
an algorithm that computes minimum changes that should
be made on the original AST to reach the patched one.
GUMTREE marks these fine-grained AST level changes on
the code diff to help developers easily see what is the exact
change to the program.

Decker et al. [73] introduce a new syntactic differencing
tool, called SRCDIFF. This tool is built on top of SRCML
which represents source code in an XML format and anno-
tates the code with the syntax information. Based on manual
and statistical analysis, they propose several heuristics to
determine if a change is actually a modification or a com-
plete replacement. Hence, in contrast with GUMTREE, the
goal of SRCDIFF is not producing an optimal diff. SRCD-
IFF intends to produce a diff that is more similar to the
changes performed by developers. The difference between
COLLECTOR-SAHAB and tools like GUMTREE and SRCDIFF
is that COLLECTOR-SAHAB adds execution data to the diff,
while they solely use static data to improve the code change
presentation.

Another way of improving code diff presenta-
tion is based on the idea of literate programming.
literate-diff-viewer [74] is a tool where the descrip-
tion of the source code changes is provided in natural lan-
guage and then the diff generated shows how the applica-
tion behavior varies, together with the description. Applied
to video game diffs, one see how the games evolve as we
scroll through the diff description.

In another line of code, researchers try to integrate new
information into the integrated development environments
(IDE) [75]. This can include putting code change information
with data related to developers’ actions in the IDE [76]
or production data [77]. For example, Cito et al. [78] add
the time spent to run a method at production to the IDE
code editor. When the code is changed, they predict the
new production time for the changed code and show it to
the developer in IDE. As a result, developers better detect
performance problems in their code changes. These works
are different from COLLECTOR-SAHAB as they do not add
program state data to the code diff.

Bohnet et al. [79] combine execution traces with code
changes to help developers identify the root cause of a fail-
ure in C/C++ programs. They define the execution trace as
the sequence of executed functions. When a program faces
a failure after a code change, the execution trace is collected
and shown to the developer. Next, the developer interacts
with the tool to detect the failure causing behavioral change.
This work is different from COLLECTOR-SAHAB as it does
not consider state values as a part of the execution trace.
In contrast with COLLECTOR-SAHAB, it is also a semi-
automatic tool requiring interaction with the developer.

Table 7 summarizes the closest related work to
COLLECTOR-SAHAB. COLLECTOR-SAHAB is the first open-
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Table 7: COLLECTOR-SAHAB compared to the related work.

Tool Language Collected Runtime Data Computed Runtime Diff Presentation Open-source

SELOGGER [32] Java Variable & Return Values – Log File ✓
DMCE [33] C/C++ Covered Lines – Log File ✓
WHIRO [34] C/C++ Heap Data – Graphical Visualization ✓
VISSOFT [40] – – Detects Outlier Logs Graphical Visualization ✓
DCI [45] Java Covered Lines Coverage Difference Amplified Test ✓
TRACESIM [51] – Stack Trace Stack Trace Similarity Similarity Score ✓
DELTADEBUGGING [56] C/C++ Variable Values Failure-inducing Changes Text ✓
GUARD [61] C/Fortran Variable Values Variable Value Difference Text & Visualization ✗
DIDIFFFF [10] Java Variable Values Variable Value Difference Ad hoc GUI ✓
COLLECTOR-SAHAB (this paper) Java State & Return Values State & Return Value Diff Augmented Code Review Diff ✓

source execution differencing tool for Java that explores
deep inside the value of all non-primitive types and com-
putes state values. COLLECTOR-SAHAB detects and reports
a unique state value in the original or patched version
of a program to help developers understand the changed
behavior.

8 CONCLUSION

In this paper, we introduce COLLECTOR-SAHAB, a novel tool
that detects runtime differences between two versions of a
program and augments the code diff with it. The augmenta-
tion is done with unique variable and return values that oc-
cur during the execution of a test case. This new information
is important for developers to better understand behavioral
changes caused by a code change. We demonstrate the
effectiveness of COLLECTOR-SAHAB by running it on 584
code diffs for Defects4J bugs. COLLECTOR-SAHAB produces
an execution difference for 95% (555/584) of the code diffs,
better than the closest related work. The high quality of
COLLECTOR-SAHAB’s augmented diffs is also confirmed by
a manual analysis of 30 commits from real-world open-
source projects. Our user study shows the participants find
the idea of code diff augmentation with runtime useful for
software development process.

In the future, research is needed to detect and mitigate
spurious program state differences. Such research relates
to the currently active research field on flaky tests. More-
over, while this work focuses on bug fixes, the augmenta-
tion done by COLLECTOR-SAHAB could also help explain
other types of changes, e.g., refactorings. Additional stud-
ies are required to investigate this potential application.
Finally, COLLECTOR-SAHAB could be integrated into a fully-
automated pipeline, e.g., continuous integration, so that
developers receive its augmented code diff directly after
proposing changes for code review.
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