
Build and Runtime Integrity for Java
Aman Sharma

KTH Royal Institute of Technology
Stockholm, Sweden
amansha@kth.se

ABSTRACT
Software Supply Chain attacks are increasingly threatening the
security of software systems, with the potential to compromise
both build and runtime integrity. Build-time integrity ensures that
the software artifact creation process, from source code to com-
piled binaries, remains untampered. Runtime integrity, on the other
hand, guarantees that the executing application loads and runs only
trusted code, preventing dynamic injection of malicious compo-
nents. This paper explores solutions to safeguard Java application’s
software supply chain at both stages. We propose techniques to
detect malicious code injection through two main contributions:
(1) novel algorithm for Java artifact equivalence, and (2) detection
and prevention of runtime code injection.

KEYWORDS
Software Supply Chain, Java, Build Integrity, Runtime Integrity

1 INTRODUCTION
The software supply chain refers to the sequence of steps and inputs
resulting in the creation of a software artifact [16]. The steps encom-
pass everything from source code development to the compilation,
packaging, and distribution of the final artifact which can either be
executed or be reused for further development. While the supply
chain facilitates efficient software production and deployment, it
also introduces points of vulnerability that attackers can exploit,
leading to what is known as a software supply chain attack. Such
attacks aim to infiltrate the supply chain at any stage, by injecting
malicious code and eventually compromising the software artifact.
What makes these attacks dangerous is their cascading impact: by
compromising a single step in the supply chain, attackers can affect
not only the direct users of that component but also all downstream
projects that depend on it.

Recent years have seen an alarming rise in software supply chain
attacks [23]. According to Sonatype’s 2024 report, the number of
attacks detected are growing exponentially [17]. One of the most
notable incidents is the Log4Shell vulnerability in the widely used
Log4j logging library [22]. This vulnerability allowed attackers
to execute arbitrary code remotely when the server logs a mali-
cious input. Runtime security vulnerabilities like Log4Shell are
particularly dangerous because they exploit the dynamic nature of
modern applications. In Java-based systems, dynamic class load-
ing is present [13] to load classes at runtime but it can also create
potential attack surfaces. For instance, when a Java application
loads classes or resources at runtime, attackers can potentially redi-
rect classloading lookups to malicious sources, injecting harmful
code into a running application and this is the case for Log4Shell.
Traditional static analysis tools would not be able to detect such
malicious behavior because it is only revealed at runtime [11]. Since
this attack is in the Java ecosystem, it incurred significant damage

as Java is widely used in critical infrastructure, financial systems,
and large-scale enterprise applications [3]. Another example is the
SolarWinds attack, where the build toolchain of SolarWinds was
compromised, leading to the distribution of a malicious update to
thousands of organizations [24]. These incidents underscore the
critical need to secure the software supply chain during build time
and runtime.

In this paper, we present 2 planned solutions for securing the
software supply chain of Java applications: ‘Algorithm for Java
artifact equivalence’ and ‘Detection and prevention of runtime
code injection’. The former contributes to build integrity while the
latter contributes to runtime integrity.

2 PROBLEM STATEMENT
The main objective of my PhD project is to improve the state of
the art for securing software supply chain in Java. We specifically
address the problem of injection of malicious code in software ar-
tifacts at both build time and runtime. We choose Java because of
its widespread adoption in enterprise and government systems [3].
30% of developers vote Java as the most popular language [18].
Moreover, Java’s extensive dependency ecosystem, with Maven
Central hosting millions of artifacts, means that a single compro-
mised component can potentially affect thousands of downstream
applications resulting in devastating software supply chain attacks.
The combination of Java’s widespread use in critical systems, and
its complex dependency network makes it both an attractive target
for attackers and a crucial focus for supply chain security research.
Thus, we address threats to build integrity and runtime integrity in
Java.

2.1 Build Integrity for Java
Build Integrity means that the software artifact on package reg-
istries corresponds to its source code [25]. It is an important prop-
erty as it ensures that the software artifact has not been tampered
with during the build process by the compiler, continuous integra-
tion or delivery systems, or any other tool that interacts with source
code. This property assures the third-party users that their binaries
are built from the same source the supplier claim [1]. SolarWinds
attack is an infamous example of a build integrity violation where
the build toolchain of SolarWinds was compromised [24] which led
to malicious updates to thousands of downstream users. Gruhn et
al. [7] show that public continuous integration systems can inject
malicious code in the artifact and the artifact can be downloaded
by unsuspecting users. Ken Thompson also demonstrates that a
compiler can inject malicious code in the artifacts it produces [20]
even though its source code would not be malicious.

The key challenge for build integrity is the fact that current
solutions do bit by bit comparison of artifacts [10] to ensure that
the build has not been tampered with. This comparison approach



is formally called Reproducible Builds [1] which is a technique to
verify that the same source code with the same build environment
produces semantically identical artifact. However, the bit-by-bit
comparison is too strict as the the compilation process introduces
spurious changes that are not relevant to the semantics of the pro-
gram [8] [6]. For example, the order of constant pool entries in
Java bytecode can differ between two builds of the same source
code [26]. This causes the builds to be classified as different even
though they are semantically equivalent. Schott et al. [14] propose
a normalization tool that removes such differences. However, it
focuses on only on Java bytecode across different Java versions
and does not take care of normalizing other features such as times-
tamps, file permissions, etc. Thus, in this thesis proposal, we want
to address the problem of detecting semantically equivalent and
non-equivalent code between two builds and hence, relaxing the
definition of Reproducible Builds.

2.2 Runtime Integrity for Java
Runtime Integrity means that the software is executing as expected
based on its stack trace, heap, threads, and loaded code [19]. Any
modification of execution behavior in terms of above properties
can be a runtime integrity violation. An infamous example of such
violation is the Log4Shell attack [22] where an external and mali-
cious code is loaded into the system. In Java, dynamic classloading
via JNDI lookup, Nashorn JavaScript engine, Class.forName, and
URLClassloader can trigger such malicious code injection.

The key challenge for checking runtime integrity is that all ap-
proaches entail modifying the application, or its runtime environ-
ment or they require manual work. In related work, there are three
approaches for checking runtime integrity. First, permission-based
access controls for each dependency [2]. However, this approach re-
quires modifications in the runtime and they differ for each version
of the runtime. Hence, it is not scalable. Second, compartmental-
ization of dependencies in a separate runtime environment [9].
This approach suffers from overhead because of context switching
between compartments and requires manual work to split code.
Finally, the third approach relies on measuring integrity in terms of
execution behavior [19]. This approach creates policy in the form
of predicates over execution behavior and detects malicious code at
runtime. However, each policy is tailored to an application and thus
also requires manual work. In this thesis, we want to contribute
to the runtime integrity of Java with new techniques for detecting
malicious code injected at runtime.

3 THESIS CONTRIBUTIONS
The expected contributions of this thesis are two solutions to secure
the software supply chain of Java at build time and runtime.

(1) A novel approach to analyze Java artifacts for verifying
reproducibility. (Build Integrity)

(2) A novel approach to detect and prevent malicious code
injected at runtime (Runtime Integrity).

3.1 Novel algorithm for Java artifact
equivalence

We propose our first contribution which is a novel approach to ana-
lyze Java artifact for verifying reproducibility. The main idea is to

create an intermediate representation that would only encapsulate
the semantic features of an artifact. Thus, ignoring the spurious
differences inserted by Java compiler. This algorithm can be applied
to pair of Java artifacts to check if they are semantically equivalent.

To evaluate this novel algorithm, we plan to run it on a dataset
of known reproducible Java artifacts and show that we can detect
semantically equivalent code more accurately. The dataset is pro-
vided by Reproducible Central [4] which is an infrastructure on
GitHub that builds and verifies reproducible Java artifacts. To prove
the effectiveness of our algorithm, we compare the results with the
baseline tool jNorm [14]. jNorm [14] is a tool that canonicalizes Java
bytecode by ignoring differences that are because of differences in
Java compiler versions or vendors. Hence, the baseline tool is apt
for comparison as it is designed to ignore irrelevant differences in
Java bytecode. Finally, we show the soundness of our algorithm
by ensuring that it can also identify semantically non-equivalent
artifacts. BinEQ [5] is a benchmark for binary equivalence that has
pairs of semantically non-equivalent bytecode and we show that
our algorithm can detect the non-equivalence.

3.2 Detection and prevention of runtime code
injection

Our second contribution is a novel approach to detect malicious
code injected at runtime. Its core novelty is that it does not require
any modifications to the application, its runtime environment, nor
any manual work. It is a two step fully automatic approach to detect
malicious code injected at runtime and prevent it from execution.
First, it builds an allowlist of classes that are allowed to be executed
at runtime. Second, it intercepts all classes being loaded at runtime
and checks whether they exist in the allowlist. SBOM.exe [15] is a
prototype of the tool that we plan to evaluate.

We evaluate SBOM.exe by showing that it is effective in mitigat-
ing software supply chain attacks, compatible with real-world Java
applications, and incurs low runtime overhead. The effectiveness is
evaluated by showing that it can detect and prevent the execution
of malicious code injected at runtime. We replicate the Log4Shell
attack and showed that SBOM.exe can detect and prevent its execu-
tion. Next, we curate a dataset of real-world Java applications and
show that SBOM.exe can be integrated into them without any mod-
ifications to the application or the Java runtime. Finally, we show
that SBOM.exe incurs low runtime overhead for integrity check-
ing. We create benchmarks with Java Microbenchmark Harness
(JMH) [12] to measure only the runtime of application without the
application warmup time [21].

4 CONCLUSION
We address the problem of injection of malicious code in software
artifacts at both build time and runtime. Our first contribution
is a novel approach to analyze Java artifacts for verifying repro-
ducibility. This algorithm will help ensure that the software artifact
has not been tampered with during the build process. Our second
contribution is a novel approach to detect malicious code injected
at runtime. This technique will help ensure that the software is
executing only the trusted code.

2



REFERENCES
[1] 2024. Reproducible Builds — a Set of Software Development Practices That

Create an Independently-Verifiable Path from Source to Binary Code. https:
//reproducible-builds.org/

[2] Paschal C. Amusuo, Kyle A. Robinson, Tanmay Singla, Huiyun Peng, Aravind
Machiry, Santiago Torres-Arias, Laurent Simon, and James C. Davis. 2024.
ZTD$_{JAVA}$: Mitigating Software Supply Chain Vulnerabilities via Zero-Trust
Dependencies. https://doi.org/10.48550/arXiv.2310.14117 arXiv:2310.14117

[3] Alexander Belokrylov. 2022. Council Post: Why And How Java Continues
To Be One Of The Most Popular Enterprise Coding Languages. https:
//www.forbes.com/councils/forbestechcouncil/2022/04/06/why-and-how-java-
continues-to-be-one-of-the-most-popular-enterprise-coding-languages/

[4] Hervé Boutemy. 2024. Jvm-Repo-Rebuild/Reproducible-Central. jvm-repo-
rebuild. https://github.com/jvm-repo-rebuild/reproducible-central

[5] Jens Dietrich, Tim White, Mohammad Abdollahpour, Elliott Wen, and Behnaz
Hassanshahi. 2024. BinEq-A Benchmark of Compiled Java Programs to Assess
Alternative Builds. https://www.researchgate.net/publication/383666359_BinEq-
A_Benchmark_of_Compiled_Java_Programs_to_Assess_Alternative_Builds

[6] Jens Dietrich, TimWhite, Behnaz Hassanshahi, and Paddy Krishnan. 2024. Levels
of Binary Equivalence for the Comparison of Binaries from Alternative Builds.
https://doi.org/10.48550/arXiv.2410.08427 arXiv:2410.08427

[7] Volker Gruhn, Christoph Hannebauer, and Christian John. 2013. Security of
Public Continuous Integration Services. In Proceedings of the 9th International
Symposium on Open Collaboration (WikiSym ’13). Association for Computing
Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/2491055.2491070

[8] Irfan Ul Haq and Juan Caballero. 2021. A Survey of Binary Code Similarity. ACM
Comput. Surv. 54, 3 (April 2021), 51:1–51:38. https://doi.org/10.1145/3446371

[9] Jianyu Jiang, Xusheng Chen, TszOn Li, Cheng Wang, Tianxiang Shen, Shixiong
Zhao, Heming Cui, Cho-Li Wang, and Fengwei Zhang. 2020. Uranus: Simple,
Efficient SGX Programming and Its Applications. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security (ASIA CCS ’20).
Association for Computing Machinery, New York, NY, USA, 826–840. https:
//doi.org/10.1145/3320269.3384763

[10] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software 39, 2 (March 2022), 62–70.
https://doi.org/10.1109/MS.2021.3073045

[11] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichaelMeier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. In
Detection of Intrusions and Malware, and Vulnerability Assessment, Clémentine
Maurice, Leyla Bilge, Gianluca Stringhini, and Nuno Neves (Eds.). Springer
International Publishing, Cham, 23–43. https://doi.org/10.1007/978-3-030-52683-
2_2

[12] Oracle. 2023. OpenJDK: Jmh. https://openjdk.org/projects/code-tools/jmh/
[13] Oracle. 2023. URLClassLoader (Java SE 21 & JDK 21). https:

//docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.
base/java/net/URLClassLoader.html

[14] Stefan Schott, Serena Elisa Ponta, Wolfram Fischer, Jonas Klauke, and Eric
Bodden. 2024. Java Bytecode Normalization for Code Similarity Analysis.
In DROPS-IDN/v2/Document/10.4230/LIPIcs.ECOOP.2024.37. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2024.37

[15] Aman Sharma, Martin Wittlinger, Benoit Baudry, and Martin Monperrus. 2024.
SBOM.EXE: Countering Dynamic Code Injection Based on Software Bill of Ma-
terials in Java. https://doi.org/10.48550/arXiv.2407.00246 arXiv:2407.00246 [cs]

[16] SLSA. 2024. Terminology. https://slsa.dev/spec/v1.0/terminology
[17] Sonatype. 2024. 2024 State of the Software Supply Chain | Executive Summary.

https://www.sonatype.com/state-of-the-software-supply-chain/introduction
[18] StackOverflow. 2024. Technology | 2024 Stack Overflow Developer Survey.

https://survey.stackoverflow.co/2024/technology/
[19] Mark Thober, J. Aaron Pendergrass, and Andrew D. Jurik. 2012. JMF: Java

Measurement Framework: Language-Supported Runtime Integrity Measurement.
In Proceedings of the Seventh ACM Workshop on Scalable Trusted Computing
(STC ’12). Association for Computing Machinery, New York, NY, USA, 21–32.
https://doi.org/10.1145/2382536.2382542

[20] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM 27, 8 (Aug.
1984), 761–763. https://doi.org/10.1145/358198.358210

[21] Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele Tucci. 2022.
Towards Effective Assessment of Steady State Performance in Java Software:
Are We There Yet? Empirical Software Engineering 28, 1 (Nov. 2022), 13. https:
//doi.org/10.1007/s10664-022-10247-x

[22] Ilkka Turunen. 2021. Log4shell by the Numbers- Why Did CVE-2021-44228 Set
the Internet on Fire? https://www.sonatype.com/blog/why-did-log4shell-set-
the-internet-on-fire

[23] verizon. 2024. 2024 Data Breach Investigations Report. Technical Re-
port. https://www.verizon.com/business/resources/T169/reports/2024-dbir-
data-breach-investigations-report.pdf

[24] Vijay A. D’Souza. 2021. SolarWinds Cyberattack Demands Signifi-
cant Federal and Private-Sector Response (Infographic) | U.S. GAO.

https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-
federal-and-private-sector-response-infographic

[25] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, andAntonino Sabetta.
2021. LastPyMile: Identifying the Discrepancy between Sources and Packages.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 780–792.
https://doi.org/10.1145/3468264.3468592

[26] Jiawen Xiong, Yong Shi, Boyuan Chen, Filipe R. Cogo, and Zhen Ming (Jack)
Jiang. 2022. Towards Build Verifiability for Java-based Systems. In Proceedings of
the 44th International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’22). Association for Computing Machinery, New York, NY,
USA, 297–306. https://doi.org/10.1145/3510457.3513050

3

https://reproducible-builds.org/
https://reproducible-builds.org/
https://doi.org/10.48550/arXiv.2310.14117
https://arxiv.org/abs/2310.14117
https://www.forbes.com/councils/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages/
https://www.forbes.com/councils/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages/
https://www.forbes.com/councils/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages/
https://github.com/jvm-repo-rebuild/reproducible-central
https://www.researchgate.net/publication/383666359_BinEq-A_Benchmark_of_Compiled_Java_Programs_to_Assess_Alternative_Builds
https://www.researchgate.net/publication/383666359_BinEq-A_Benchmark_of_Compiled_Java_Programs_to_Assess_Alternative_Builds
https://doi.org/10.48550/arXiv.2410.08427
https://arxiv.org/abs/2410.08427
https://doi.org/10.1145/2491055.2491070
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3320269.3384763
https://doi.org/10.1145/3320269.3384763
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1007/978-3-030-52683-2_2
https://openjdk.org/projects/code-tools/jmh/
https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/net/URLClassLoader.html
https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/net/URLClassLoader.html
https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/net/URLClassLoader.html
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://doi.org/10.48550/arXiv.2407.00246
https://arxiv.org/abs/2407.00246
https://slsa.dev/spec/v1.0/terminology
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://survey.stackoverflow.co/2024/technology/
https://doi.org/10.1145/2382536.2382542
https://doi.org/10.1145/358198.358210
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1007/s10664-022-10247-x
https://www.sonatype.com/blog/why-did-log4shell-set-the-internet-on-fire
https://www.sonatype.com/blog/why-did-log4shell-set-the-internet-on-fire
https://www.verizon.com/business/resources/T169/reports/2024-dbir-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/T169/reports/2024-dbir-data-breach-investigations-report.pdf
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3510457.3513050

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Build Integrity for Java
	2.2 Runtime Integrity for Java

	3 Thesis Contributions
	3.1 Novel algorithm for Java artifact equivalence
	3.2 Detection and prevention of runtime code injection

	4 Conclusion
	References

